The effect of sapphire nitridation temperature on the chemistry and microstructure of the sapphire substrate/GaN interface, nucleation layer, and of the GaN epilayers grown by rf plasma assisted molecular beam epitaxy is investigated. It is found that a sapphire nitridation temperature as low as 200 degreesC improves the structural and optical quality of GaN epilayers. This result can be explained by the chemistry of the sapphire nitridation process, which is discussed in the framework of a model considering the competitive formation of AlN and oxynitride (NO). In particular, at 200 degreesC, NO desorbs from the sapphire surface, yielding an homogeneous 6 A AlN layer upon N-2 plasma nitridation. This low temperature AlN template favors the nucleation of hexagonal GaN nuclei which coalesce completely resulting in a hexagonal GaN buffer layer that homogeneously covers the sapphire substrate. This condition promotes the growth of a high quality GaN epilayer. In contrast, high nitridation temperatures result in a mixed AlN/NO nitrided sapphire surface which induce a perturbed and more defected interface with the occurrence of cubic crystallites in the GaN buffer. A sapphire surface with random GaN islands is found upon annealing of the GaN buffer and this condition results in a low-quality GaN epilayer

Role of sapphire nitridation temperature on GaN growth by plasma assisted molecular beam epitaxy: Part II. Interplay between chemistry and structure of layers

2002

Abstract

The effect of sapphire nitridation temperature on the chemistry and microstructure of the sapphire substrate/GaN interface, nucleation layer, and of the GaN epilayers grown by rf plasma assisted molecular beam epitaxy is investigated. It is found that a sapphire nitridation temperature as low as 200 degreesC improves the structural and optical quality of GaN epilayers. This result can be explained by the chemistry of the sapphire nitridation process, which is discussed in the framework of a model considering the competitive formation of AlN and oxynitride (NO). In particular, at 200 degreesC, NO desorbs from the sapphire surface, yielding an homogeneous 6 A AlN layer upon N-2 plasma nitridation. This low temperature AlN template favors the nucleation of hexagonal GaN nuclei which coalesce completely resulting in a hexagonal GaN buffer layer that homogeneously covers the sapphire substrate. This condition promotes the growth of a high quality GaN epilayer. In contrast, high nitridation temperatures result in a mixed AlN/NO nitrided sapphire surface which induce a perturbed and more defected interface with the occurrence of cubic crystallites in the GaN buffer. A sapphire surface with random GaN islands is found upon annealing of the GaN buffer and this condition results in a low-quality GaN epilayer
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/5592
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 50
social impact