The precise manipulation of underwater acoustic waves in the ultrasonic frequency domain using lightweight materials, encompassing both bio-compatible and synthetic substrates, holds significant promise for diverse applications across medicine, defense, pharmaceutics, and industry. This study investigates the application of femtosecond laser micro-nanofabrication to enhance the acoustic performance of submerged steel metasurfaces featuring multi-scale hierarchical architectures and controlled wettability. Laser surface engineering reveals the latent potential of superimposing periodic nanostructures onto precisely defined micro-structured morphologies to achieve a notable broadband (0.5-1.5 MHz) attenuation of transmitted ultrasound, concurrently exhibiting a distinct frequency-dependent reflection profile. This approach offers a versatile methodology for tailoring underwater wave propagation characteristics through the creation of unconventional surface functionalities, thus opening new avenues for the design of advanced acoustic metasurfaces.

Unlocking ultrasound manipulation by laser-engineered hierarchical nanostructures

Gaudiuso, Caterina;Fanelli, Fiorenza;Volpe, Annalisa;Ancona, Antonio;Buogo, Silvano;Mezzapesa, Francesco P
2025

Abstract

The precise manipulation of underwater acoustic waves in the ultrasonic frequency domain using lightweight materials, encompassing both bio-compatible and synthetic substrates, holds significant promise for diverse applications across medicine, defense, pharmaceutics, and industry. This study investigates the application of femtosecond laser micro-nanofabrication to enhance the acoustic performance of submerged steel metasurfaces featuring multi-scale hierarchical architectures and controlled wettability. Laser surface engineering reveals the latent potential of superimposing periodic nanostructures onto precisely defined micro-structured morphologies to achieve a notable broadband (0.5-1.5 MHz) attenuation of transmitted ultrasound, concurrently exhibiting a distinct frequency-dependent reflection profile. This approach offers a versatile methodology for tailoring underwater wave propagation characteristics through the creation of unconventional surface functionalities, thus opening new avenues for the design of advanced acoustic metasurfaces.
2025
Istituto di Chimica dei Composti Organo Metallici - ICCOM - Sede Secondaria Bari
Istituto di fotonica e nanotecnologie - IFN - Sede Secondaria Bari
Istituto di iNgegneria del Mare - INM (ex INSEAN)
underwater acoustics
ultrafast laser surface functionalization
laser-induced periodic surface structures (LIPSS)
hierarchical surface morphology
femtosecond laser pulse bursts
laser-induced surface chemistry
wettability
File in questo prodotto:
File Dimensione Formato  
Gaudiuso_2025_J._Phys._D__Appl._Phys._58_49LT01.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.08 MB
Formato Adobe PDF
2.08 MB Adobe PDF Visualizza/Apri
dae1e0dsupp1.docx

accesso aperto

Descrizione: Supporting information
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 480.57 kB
Formato Microsoft Word XML
480.57 kB Microsoft Word XML Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/559462
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact