Mutations in acute myeloid leukemia (AML)-associated oncogenes often arise in hematopoietic stem cells (HSCs) and promote acquisition of leukemia stem cell (LSC) phenotypes. However, as LSCs often share features of lineage-restricted progenitors, the relative contribution of differentiation status to LSC transformation is unclear. Using murine MLL-AF9 and MOZ-TIF2 AML models, we show that myeloid differentiation to granulocyte macrophage progenitors (GMPs) is critical for LSC generation. Disrupting GMP formation by deleting the lineage-restricted transcription factor C/EBPa blocked normal granulocyte formation and prevented initiation of AML. However, restoring myeloid differentiation in C/EBPa mutants with inflammatory cytokines reestablished AML transformation capacity. Genomic analyses of GMPs, including gene expression and H3K79me2 profiling in conjunction with ATAC-seq, revealed a permissive genomic environment for activation of a minimal transcription program shared by GMPs and LSCs. Together, these findings show that myeloid differentiation is a prerequisite for LSC formation and AML development, providing insights for therapeutic development.

Hematopoietic Differentiation Is Required for Initiation of Acute Myeloid Leukemia

Levantini E.;
2015

Abstract

Mutations in acute myeloid leukemia (AML)-associated oncogenes often arise in hematopoietic stem cells (HSCs) and promote acquisition of leukemia stem cell (LSC) phenotypes. However, as LSCs often share features of lineage-restricted progenitors, the relative contribution of differentiation status to LSC transformation is unclear. Using murine MLL-AF9 and MOZ-TIF2 AML models, we show that myeloid differentiation to granulocyte macrophage progenitors (GMPs) is critical for LSC generation. Disrupting GMP formation by deleting the lineage-restricted transcription factor C/EBPa blocked normal granulocyte formation and prevented initiation of AML. However, restoring myeloid differentiation in C/EBPa mutants with inflammatory cytokines reestablished AML transformation capacity. Genomic analyses of GMPs, including gene expression and H3K79me2 profiling in conjunction with ATAC-seq, revealed a permissive genomic environment for activation of a minimal transcription program shared by GMPs and LSCs. Together, these findings show that myeloid differentiation is a prerequisite for LSC formation and AML development, providing insights for therapeutic development.
2015
Istituto di Tecnologie Biomediche - ITB
stem cells
File in questo prodotto:
File Dimensione Formato  
Ye et al Cell Stem Cell 2015 .pdf

accesso aperto

Licenza: Creative commons
Dimensione 3.04 MB
Formato Adobe PDF
3.04 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/559482
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 101
  • ???jsp.display-item.citation.isi??? ND
social impact