Group VII ethylene response factors (ERF-VII) are plant-specific transcription factors (TFs) known for their role in the activation of hypoxia-responsive genes under low oxygen stress but also in plant endogenous hypoxic niches. However, their function in the microaerophilic nitrogen-fixing nodules of legumes has not yet been investigated. We investigated regulation and the function of the two Medicago truncatula ERF-VII TFs (MtERF74 and MtERF75) in roots and nodules, MtERF74 and MtERF75 in response to hypoxia stress and during the nodulation process using an RNA interference strategy and targeted proteolysis of MtERF75. Knockdown of MtERF74 and MtERF75 partially blocked the induction of hypoxia-responsive genes in roots exposed to hypoxia stress. In addition, a significant reduction in nodulation capacity and nitrogen fixation activity was observed in mature nodules of double knockdown transgenic roots. Overall, the results indicate that MtERF74 and MtERF75 are involved in the induction of MtNR1 and Pgb1.1 expression for efficient Phytogb-nitric oxide respiration in the nodule.

Group {VII} ethylene response factors, {MtERF}74 and {MtERF}75, sustain nitrogen fixation in $\less$i$\greater$Medicago truncatula$\less$/i$\greater$ microoxic nodules

Marco Forgia;
2022

Abstract

Group VII ethylene response factors (ERF-VII) are plant-specific transcription factors (TFs) known for their role in the activation of hypoxia-responsive genes under low oxygen stress but also in plant endogenous hypoxic niches. However, their function in the microaerophilic nitrogen-fixing nodules of legumes has not yet been investigated. We investigated regulation and the function of the two Medicago truncatula ERF-VII TFs (MtERF74 and MtERF75) in roots and nodules, MtERF74 and MtERF75 in response to hypoxia stress and during the nodulation process using an RNA interference strategy and targeted proteolysis of MtERF75. Knockdown of MtERF74 and MtERF75 partially blocked the induction of hypoxia-responsive genes in roots exposed to hypoxia stress. In addition, a significant reduction in nodulation capacity and nitrogen fixation activity was observed in mature nodules of double knockdown transgenic roots. Overall, the results indicate that MtERF74 and MtERF75 are involved in the induction of MtNR1 and Pgb1.1 expression for efficient Phytogb-nitric oxide respiration in the nodule.
2022
Istituto per la Protezione Sostenibile delle Piante - IPSP
ethylene response factors group VII family
hypoxia stress
hypoxia-responsive genes
N-degron
nitrogen fixation
O2-sensing
Rhizobium legumes symbiosis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/559605
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact