Aqueous solutions are crucial in chemistry, biology, environmental science, and technology. The chemistry of solutes is influenced by the surrounding solvation shell of water molecules, which have different chemical properties than bulk water due to their different electronic and geometric structure. It is experimentally challenging to selectively investigate this property-determining electronic and geometric structure. Here, we report experimental results on the non-local X-ray emission process Intermolecular Radiative Decay, for the prototypical ions Na+ and Mg2+ in water. We show that, in Intermolecular Radiative Decay, an electron from the solvation shell fills a core hole in the solute, and the released energy is emitted as an X-ray photon. We interpret the underlying mechanism using theoretical calculations, and show how Intermolecular Radiative Decay will allow us to meet the challenge of selectively probing the solvation shell from within.
Non-local X-ray intermolecular radiative decay probes solvation shell of ions in water
Carravetta V.;
2025
Abstract
Aqueous solutions are crucial in chemistry, biology, environmental science, and technology. The chemistry of solutes is influenced by the surrounding solvation shell of water molecules, which have different chemical properties than bulk water due to their different electronic and geometric structure. It is experimentally challenging to selectively investigate this property-determining electronic and geometric structure. Here, we report experimental results on the non-local X-ray emission process Intermolecular Radiative Decay, for the prototypical ions Na+ and Mg2+ in water. We show that, in Intermolecular Radiative Decay, an electron from the solvation shell fills a core hole in the solute, and the released energy is emitted as an X-ray photon. We interpret the underlying mechanism using theoretical calculations, and show how Intermolecular Radiative Decay will allow us to meet the challenge of selectively probing the solvation shell from within.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


