Ribonucleases are involved in several biological processes, including the turnover of structural and messenger RNAs and the specific processing of the cellular transcriptome. Here, we characterized the RNase Y from Helicobacter pylori. We found that RNase Y is membrane-associated and its expression is controlled during bacterial growth and by Fur in response to iron. We observed that RNase Y deletion has a limited impact on H. pylori transcriptome and on bacterial growth. Interestingly, we found that RNase Y is involved in the metabolism of CncR1, a virulence-associated sRNA oppositely modulating bacterial motility and adhesion to host cells. Indeed, RNase Y inactivation led to the accumulation of a 3′-extended CncR1 isoform, which appeared unable to interact in vitro with a known target mRNA. The observation that the RNAse Y-mutant strain showed deregulation of several members of the CncR1 regulon suggests this ribonuclease has an important role in H. pylori posttranscriptional regulation.

RNase Y mediates posttranscriptional control of the virulence-associated CncR1 small-RNA in Helicobacter pylori

Pinatel, Eva
Secondo
Formal Analysis
;
2025

Abstract

Ribonucleases are involved in several biological processes, including the turnover of structural and messenger RNAs and the specific processing of the cellular transcriptome. Here, we characterized the RNase Y from Helicobacter pylori. We found that RNase Y is membrane-associated and its expression is controlled during bacterial growth and by Fur in response to iron. We observed that RNase Y deletion has a limited impact on H. pylori transcriptome and on bacterial growth. Interestingly, we found that RNase Y is involved in the metabolism of CncR1, a virulence-associated sRNA oppositely modulating bacterial motility and adhesion to host cells. Indeed, RNase Y inactivation led to the accumulation of a 3′-extended CncR1 isoform, which appeared unable to interact in vitro with a known target mRNA. The observation that the RNAse Y-mutant strain showed deregulation of several members of the CncR1 regulon suggests this ribonuclease has an important role in H. pylori posttranscriptional regulation.
2025
Istituto di Tecnologie Biomediche - ITB
Cell biology
Human metabolism
File in questo prodotto:
File Dimensione Formato  
PIIS2589004225000756.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.33 MB
Formato Adobe PDF
4.33 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/559685
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact