The growing integration of Internet of Things (IoT) technology within the healthcare sector has revolutionized healthcare delivery, enabling advanced personalized care and precise treatments. However, this raises significant challenges, demanding robust, intelligible, and effective monitoring mechanisms. We propose an interpretable machine-learning approach to the trustworthy and effective detection of behavioral anomalies within the realm of medical IoT. The discovered anomalies serve as indicators of potential system failures and security threats. Essentially, the detection of anomalies is accomplished by learning a classifier from the operational data generated by smart devices. The learning problem is dealt with in predictive association modeling, whose expressiveness and intelligibility enforce trustworthiness to offer a comprehensive, fully interpretable, and effective monitoring solution for the medical IoT ecosystem. Preliminary results show the effectiveness of our approach.

Trustworthy Precision Medicine: An Interpretable Approach to Detecting Anomalous Behavior of IoT Devices

Costa G.
Co-primo
;
Forestiero A.
Co-primo
;
Macri' D.
Co-primo
;
Ortale R.
Co-primo
2024

Abstract

The growing integration of Internet of Things (IoT) technology within the healthcare sector has revolutionized healthcare delivery, enabling advanced personalized care and precise treatments. However, this raises significant challenges, demanding robust, intelligible, and effective monitoring mechanisms. We propose an interpretable machine-learning approach to the trustworthy and effective detection of behavioral anomalies within the realm of medical IoT. The discovered anomalies serve as indicators of potential system failures and security threats. Essentially, the detection of anomalies is accomplished by learning a classifier from the operational data generated by smart devices. The learning problem is dealt with in predictive association modeling, whose expressiveness and intelligibility enforce trustworthiness to offer a comprehensive, fully interpretable, and effective monitoring solution for the medical IoT ecosystem. Preliminary results show the effectiveness of our approach.
2024
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
9781643685182
Anomaly Detection
Interpretable Artificial Intelligence
Medical IoT Security
Precision Medicine
File in questo prodotto:
File Dimensione Formato  
SHTI-314-SHTI240068.pdf

solo utenti autorizzati

Licenza: Altro tipo di licenza
Dimensione 474.85 kB
Formato Adobe PDF
474.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/559910
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact