Flowers are key reproductive structures for many plant species. They are essential for seed and fruit production, and their development is tightly regulated by hormonal and genetic networks. The homeodomain transcription factors HAT3 and ATHB4 are known regulators of adaxial identity and hormone response. We demonstrate that flowers of the hat3 athb4 double mutant emerge at wider divergence angles relative to the wild type, a phenotype reflecting modified phyllotaxy and regulated by low auxin conditions. In addition, hat3 athb4 flowers exhibit aberrant trichome patterning on their sepals associated with enhanced sensitivity to cytokinin (CK). Through RNA-seq analysis of hat3 athb4 inflorescences, we identify the misregulation of genes involved in auxin biosynthesis (YUCCAs), auxin transport (PID), and CK metabolism (CKXs) and transport (PUPs). These findings suggest that HAT3 and ATHB4 fine-tune the auxin/CK balance and coordinate critical pattern events during reproductive development, offering new insight into hormone-mediated regulation of floral patterning.

The HD-ZIP II Transcription Factors HAT3 and ATHB4 Fine-Tune Auxin and Cytokinin Pathways During Flower Development

Monica Carabelli
Penultimo
;
2025

Abstract

Flowers are key reproductive structures for many plant species. They are essential for seed and fruit production, and their development is tightly regulated by hormonal and genetic networks. The homeodomain transcription factors HAT3 and ATHB4 are known regulators of adaxial identity and hormone response. We demonstrate that flowers of the hat3 athb4 double mutant emerge at wider divergence angles relative to the wild type, a phenotype reflecting modified phyllotaxy and regulated by low auxin conditions. In addition, hat3 athb4 flowers exhibit aberrant trichome patterning on their sepals associated with enhanced sensitivity to cytokinin (CK). Through RNA-seq analysis of hat3 athb4 inflorescences, we identify the misregulation of genes involved in auxin biosynthesis (YUCCAs), auxin transport (PID), and CK metabolism (CKXs) and transport (PUPs). These findings suggest that HAT3 and ATHB4 fine-tune the auxin/CK balance and coordinate critical pattern events during reproductive development, offering new insight into hormone-mediated regulation of floral patterning.
2025
Istituto di Biologia e Patologia Molecolari - IBPM
HD-ZIPs class-II; auxin; cytokinin; hormonal homeostasis; flower development; trichome patterning; phyllotaxy; transcription factors; plant reproduction
File in questo prodotto:
File Dimensione Formato  
Maio et al., 2025, plants-14-03723.pdf

accesso aperto

Descrizione: articolo in rivista
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.12 MB
Formato Adobe PDF
3.12 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/560066
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact