In the Cloud-Edge Continuum, dynamic infrastructure change and variable workloads complicate efficient resource management. Centralized methods can struggle to adapt, whilst purely decentralized policies lack global oversight. This paper proposes a hybrid framework using Graph Neural Network (GNN) embeddings and collaborative multi-agent reinforcement learning (MARL). Local agents handle neighbourhood-level decisions, and a global orchestrator coordinates system-wide. This work contributes to decentralized application placement strategies with centralized oversight, GNN integration and collaborative MARL for efficient, adaptive and scalable resource management.
Adaptive AI-based decentralized resource management in the cloud-edge continuum
Li L.;Coppola M.;
2025
Abstract
In the Cloud-Edge Continuum, dynamic infrastructure change and variable workloads complicate efficient resource management. Centralized methods can struggle to adapt, whilst purely decentralized policies lack global oversight. This paper proposes a hybrid framework using Graph Neural Network (GNN) embeddings and collaborative multi-agent reinforcement learning (MARL). Local agents handle neighbourhood-level decisions, and a global orchestrator coordinates system-wide. This work contributes to decentralized application placement strategies with centralized oversight, GNN integration and collaborative MARL for efficient, adaptive and scalable resource management.| File | Dimensione | Formato | |
|---|---|---|---|
|
Adaptive_AI-based_Decentralized_Resource_Management_in_the_Cloud-Edge_Continuum.pdf
non disponibili
Descrizione: Adaptive AI-based Decentralized Resource Management in the Cloud-Edge Continuum
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
265.05 kB
Formato
Adobe PDF
|
265.05 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


