In the Cloud-Edge Continuum, dynamic infrastructure change and variable workloads complicate efficient resource management. Centralized methods can struggle to adapt, whilst purely decentralized policies lack global oversight. This paper proposes a hybrid framework using Graph Neural Network (GNN) embeddings and collaborative multi-agent reinforcement learning (MARL). Local agents handle neighbourhood-level decisions, and a global orchestrator coordinates system-wide. This work contributes to decentralized application placement strategies with centralized oversight, GNN integration and collaborative MARL for efficient, adaptive and scalable resource management.

Adaptive AI-based decentralized resource management in the cloud-edge continuum

Li L.;Coppola M.;
2025

Abstract

In the Cloud-Edge Continuum, dynamic infrastructure change and variable workloads complicate efficient resource management. Centralized methods can struggle to adapt, whilst purely decentralized policies lack global oversight. This paper proposes a hybrid framework using Graph Neural Network (GNN) embeddings and collaborative multi-agent reinforcement learning (MARL). Local agents handle neighbourhood-level decisions, and a global orchestrator coordinates system-wide. This work contributes to decentralized application placement strategies with centralized oversight, GNN integration and collaborative MARL for efficient, adaptive and scalable resource management.
2025
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
979-8-3315-2494-4
AI
Continuum Computing
Decentralized Application Placement
Dynamic Resource Management
Multi-Agent Reinforcement Learning
File in questo prodotto:
File Dimensione Formato  
Adaptive_AI-based_Decentralized_Resource_Management_in_the_Cloud-Edge_Continuum.pdf

non disponibili

Descrizione: Adaptive AI-based Decentralized Resource Management in the Cloud-Edge Continuum
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 265.05 kB
Formato Adobe PDF
265.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/560069
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact