Hepatic mitochondrial maladaptation features the transition from metabolic dysfunction-associated steatotic liver disease (MASLD) to Steatohepatitis (MASH) up to fibrosis/cirrhosis. However, it is still unexplored whether mitochondrial alterations also affect adipose tissue, muscle and heart during disease progression. C57Bl/6 mice were fed an AMLN diet to recapitulate the human MASLD spectrum. In the liver, TEM depicted a progressive morphologic dysfunction of mitochondria, which appeared swollen in MASH, with disorganized cristae/matrix loss in MASH-fibrosis. The mitophagy pathway was reduced in MASH-fibrosis, thus explaining the accumulation of damaged mitochondria, whereas mitochondrial complexes activities alongside OXPHOS protein levels and ATP production were dampened across the disease in liver, adipose, muscle, and cardiac tissues. Finally, the release of cell-free circulating mitochondrial DNA into the bloodstream reflected tissue mitochondrial impairment. In sum, we demonstrated that alterations in mitochondrial morphology, life cycle, and activity feature all disease stages in the liver but also in other tissues engaged in MASLD evolution.

Exploring multiorgan mitochondrial dysfunction in the switch toward progressive MASLD in AMLN mice

Mosca E.;
2025

Abstract

Hepatic mitochondrial maladaptation features the transition from metabolic dysfunction-associated steatotic liver disease (MASLD) to Steatohepatitis (MASH) up to fibrosis/cirrhosis. However, it is still unexplored whether mitochondrial alterations also affect adipose tissue, muscle and heart during disease progression. C57Bl/6 mice were fed an AMLN diet to recapitulate the human MASLD spectrum. In the liver, TEM depicted a progressive morphologic dysfunction of mitochondria, which appeared swollen in MASH, with disorganized cristae/matrix loss in MASH-fibrosis. The mitophagy pathway was reduced in MASH-fibrosis, thus explaining the accumulation of damaged mitochondria, whereas mitochondrial complexes activities alongside OXPHOS protein levels and ATP production were dampened across the disease in liver, adipose, muscle, and cardiac tissues. Finally, the release of cell-free circulating mitochondrial DNA into the bloodstream reflected tissue mitochondrial impairment. In sum, we demonstrated that alterations in mitochondrial morphology, life cycle, and activity feature all disease stages in the liver but also in other tissues engaged in MASLD evolution.
2025
Istituto di Tecnologie Biomediche - ITB
Biochemistry
Systems biology
molecular biology
File in questo prodotto:
File Dimensione Formato  
Meroni2025.iScience.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 12.64 MB
Formato Adobe PDF
12.64 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/560191
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact