This study presents an AI-enhanced framework to evaluate the social sustainability of working environments in European industrial systems. Focusing on four key dimensions (Gender Gap, Employment by Skill, Safety at Work, and Digital Skill Gap) the framework leverages machine learning techniques (clustering and decision trees) to classify and compare countries’ social sustainability profiles over time. Results highlight significant disparities across European nations and temporal improvements in some indicators, reflecting increased policy attention. The integrated human–AI approach supports transparent, data-driven decision-making for policymakers and collaborative networks, contributing to harmonized, socially sustainable industrial development across the EU.

Leveraging AI Data Analytics Methodology for Social Sustainability of Working Environments: An Integrated Framework

Diletta Tosetto
;
Andrea Zangiacomi;Giulia Perin;Rosanna Fornasiero
2025

Abstract

This study presents an AI-enhanced framework to evaluate the social sustainability of working environments in European industrial systems. Focusing on four key dimensions (Gender Gap, Employment by Skill, Safety at Work, and Digital Skill Gap) the framework leverages machine learning techniques (clustering and decision trees) to classify and compare countries’ social sustainability profiles over time. Results highlight significant disparities across European nations and temporal improvements in some indicators, reflecting increased policy attention. The integrated human–AI approach supports transparent, data-driven decision-making for policymakers and collaborative networks, contributing to harmonized, socially sustainable industrial development across the EU.
2025
Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato - STIIMA (ex ITIA)
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
978-3-032-05673-3
social sustainability
AI-based analysis
industrial context
data-driven decision-making
File in questo prodotto:
File Dimensione Formato  
978-3-032-05673-3_30 (1).pdf

non disponibili

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.51 MB
Formato Adobe PDF
2.51 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/560602
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact