The possibility of correcting genetic and epigenetic alterations through gene therapies has been considered a cornerstone in oncology. However, modest results have been achieved in clinics, mainly due to inefficient tumor targeting and side effects. Nucleic acid aptamers are three-dimensional folded single-stranded DNAs or RNAs that selectively bind receptors on cellular membranes, being subsequently internalized via receptor-mediated endocytosis. Thanks to this capability, internalizing aptamers have been investigated as targeting moieties to deliver gene therapies more efficiently and selectively in tumor cells. Promising preclinical results suggested that aptamers could represent the long-awaited step forward in cancer gene therapy. Nevertheless, no clinical trials of aptamer-based gene therapies have been carried out two decades after the first preclinical application, indicating the field could not be sufficiently mature for translatability. The review aims to update thestate of the art regarding aptamers' contribution to gene therapy delivery and to critically highlight the main shortcomings that could have hindered clinical evaluations. In addition, pioneering insights regarding the use of aptamers as co-factors in CRISPR/Cas9 technology or as direct epigenetic regulators are also summarized, revealing more extended applicability not limited to the delivery of cancer gene therapies.
Aptamer-based applications in delivering cancer gene therapies and beyond: state of the art and the missing links to clinical translation
Ciccone G;Ibba ML
;Di Vito A
;Esposito CL
Co-ultimo
;Catuogno S
Co-ultimo
2025
Abstract
The possibility of correcting genetic and epigenetic alterations through gene therapies has been considered a cornerstone in oncology. However, modest results have been achieved in clinics, mainly due to inefficient tumor targeting and side effects. Nucleic acid aptamers are three-dimensional folded single-stranded DNAs or RNAs that selectively bind receptors on cellular membranes, being subsequently internalized via receptor-mediated endocytosis. Thanks to this capability, internalizing aptamers have been investigated as targeting moieties to deliver gene therapies more efficiently and selectively in tumor cells. Promising preclinical results suggested that aptamers could represent the long-awaited step forward in cancer gene therapy. Nevertheless, no clinical trials of aptamer-based gene therapies have been carried out two decades after the first preclinical application, indicating the field could not be sufficiently mature for translatability. The review aims to update thestate of the art regarding aptamers' contribution to gene therapy delivery and to critically highlight the main shortcomings that could have hindered clinical evaluations. In addition, pioneering insights regarding the use of aptamers as co-factors in CRISPR/Cas9 technology or as direct epigenetic regulators are also summarized, revealing more extended applicability not limited to the delivery of cancer gene therapies.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


