The immune regulatory defects that promote neuroinflammation in multiple sclerosis (MS) remain unclear. We show that a specific regulatory T (Treg) cell subpopulation expressing Notch3 was increased in individuals with MS and in mice with experimental autoimmune encephalomyelitis (EAE). Notch3+ Treg cells were induced by the gut microbiota via Toll-like receptor (TLR)-dependent mechanisms. They then translocated to the central nervous system (CNS) in EAE where they promoted disease severity. Notch3 interacted with delta-like ligand 1 (DLL1) on microglia to subvert Treg cells into T helper 17 (Th17) cells. Notch3 deletion in Treg cells prevented EAE onset by stabilizing Treg cells and by simultaneously promoting the expansion of a tissue-resident Treg cell population that expressed neuropeptide Y receptor 1 (NPY1R) and which suppressed pathogenic IFN-γ+ and GM-CSF+ T cells. Our studies thus identify altered Treg cell population dynamics as a fundamental pathogenic mechanism in autoimmune neuroinflammation.

Notch3 destabilizes regulatory T cells to drive autoimmune neuroinflammation in multiple sclerosis

Lanzetta, Olga
Formal Analysis
;
Angelini, Claudia
Formal Analysis
;
2025

Abstract

The immune regulatory defects that promote neuroinflammation in multiple sclerosis (MS) remain unclear. We show that a specific regulatory T (Treg) cell subpopulation expressing Notch3 was increased in individuals with MS and in mice with experimental autoimmune encephalomyelitis (EAE). Notch3+ Treg cells were induced by the gut microbiota via Toll-like receptor (TLR)-dependent mechanisms. They then translocated to the central nervous system (CNS) in EAE where they promoted disease severity. Notch3 interacted with delta-like ligand 1 (DLL1) on microglia to subvert Treg cells into T helper 17 (Th17) cells. Notch3 deletion in Treg cells prevented EAE onset by stabilizing Treg cells and by simultaneously promoting the expansion of a tissue-resident Treg cell population that expressed neuropeptide Y receptor 1 (NPY1R) and which suppressed pathogenic IFN-γ+ and GM-CSF+ T cells. Our studies thus identify altered Treg cell population dynamics as a fundamental pathogenic mechanism in autoimmune neuroinflammation.
2025
Istituto per le applicazioni del calcolo - IAC - Sede Secondaria Napoli
Single cell analysis
immune tolerance
regulatory T cells
Notch3
multiple sclerosis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/561147
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact