Microplastics (MPs) and microfibers (MFs) pose significant environmental hazards, especially in aquatic systems, and are increasingly subject to EU regulatory measures under REACH (Registration, Evaluation, Authorization, and Restriction of Chemicals). This study investigates the effectiveness of magnetic micro/nanoparticles (MNPs) in removing MFs (e.g., polyester) from water samples from industrial laundry processes. Eight types of MNPs, primarily iron-based and chosen for their easy availability and low cost, were tested. The removal efficiency of these MNPs was evaluated in both laboratory-prepared samples and real industrial laundry effluents. The results demonstrated that most of the tested magnetic MNPs achieved removal rates exceeding 60% with averages of 66% for laboratory samples and 73% for real samples, under optimized conditions. The robustness and applicability of these findings were confirmed by demonstrating that the concentration of MFs in untreated real samples aligns with established literature. This study addresses both the technical aspects of MF separation from water and their real applicability. Magnetic MNPs proved to be a practical and possible scalable solution for mitigating MFs pollution in water, offering a viable approach for both domestic and industrial applications in water purification. The most suitable option was identified based on sustainability criteria such as ecotoxicity, operator safety, and economic benefits. Among the tested MNPs, Carbonyl Iron Powder (CIP), grade OF (Oral Formulation), BASF, emerged as the most promising candidate due to its low environmental impact and established safety profile.

Assessing the Efficacy of Magnetic Micro-Nanoparticles in Water Treatment as a Potential Solution for Textile Microplastic Pollution

Muzzi, Beatrice;Albino, Martin;
2025

Abstract

Microplastics (MPs) and microfibers (MFs) pose significant environmental hazards, especially in aquatic systems, and are increasingly subject to EU regulatory measures under REACH (Registration, Evaluation, Authorization, and Restriction of Chemicals). This study investigates the effectiveness of magnetic micro/nanoparticles (MNPs) in removing MFs (e.g., polyester) from water samples from industrial laundry processes. Eight types of MNPs, primarily iron-based and chosen for their easy availability and low cost, were tested. The removal efficiency of these MNPs was evaluated in both laboratory-prepared samples and real industrial laundry effluents. The results demonstrated that most of the tested magnetic MNPs achieved removal rates exceeding 60% with averages of 66% for laboratory samples and 73% for real samples, under optimized conditions. The robustness and applicability of these findings were confirmed by demonstrating that the concentration of MFs in untreated real samples aligns with established literature. This study addresses both the technical aspects of MF separation from water and their real applicability. Magnetic MNPs proved to be a practical and possible scalable solution for mitigating MFs pollution in water, offering a viable approach for both domestic and industrial applications in water purification. The most suitable option was identified based on sustainability criteria such as ecotoxicity, operator safety, and economic benefits. Among the tested MNPs, Carbonyl Iron Powder (CIP), grade OF (Oral Formulation), BASF, emerged as the most promising candidate due to its low environmental impact and established safety profile.
2025
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
remediation strategies
water purification
industrial washing
magnetic micro/nanoparticles
microfibers
microplastics
File in questo prodotto:
File Dimensione Formato  
Microplastics 2025, 4, 104.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 14.82 MB
Formato Adobe PDF
14.82 MB Adobe PDF Visualizza/Apri
Microplastics 2025, 4, 104 reduced size.pdf

accesso aperto

Descrizione: reduced size
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 865.05 kB
Formato Adobe PDF
865.05 kB Adobe PDF Visualizza/Apri
microplastics-3799684-supplementary.pdf

accesso aperto

Descrizione: supporting information
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/561931
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact