C1q is released by microglia, localizes on weak synapses and acts as a tag for microglial synaptic pruning. However, how C1q tags synapses during the pruning period remains to be fully elucidated. Here, we report that C1q is delivered via extracellular vesicles by microglia to pre-synaptic sites that externalize phosphatidylserine. Using approaches to increase or reduce vesicles production in microglia, by C9orf72 knock out or pharmacological inhibition, respectively, we provided mechanistic evidence linking extracellular vesicle release to pre-synaptic remodelling in neuron-microglia cultures. In C9orf72 knockout mice, we confirmed larger production of microglial extracellular vesicles and showed augmented C1q presynaptic deposition associated with enhanced engulfment by microglia in the early postnatal hippocampus. Finally, we provide evidence that microglia physiologically release more vesicles during the period of postnatal circuit refinement. These findings implicate abnormal release of microglial extracellular vesicles in both neurodevelopmental and age-related disorders characterized by dysregulated microglia-mediated synaptic pruning.

Microglial Extracellular Vesicles Mediate C1q Deposition at the Pre-Synapse and Promote Synaptic Pruning

D'Arrigo G.;Cutugno G.;Golia M. T.;Lombardi M.;Colombo S. F.;Frigerio R.;Cretich M.;Gagni P.;Battocchio E.;Barone C.;Bellini S.;Gabrielli M.;Verderio C.
2025

Abstract

C1q is released by microglia, localizes on weak synapses and acts as a tag for microglial synaptic pruning. However, how C1q tags synapses during the pruning period remains to be fully elucidated. Here, we report that C1q is delivered via extracellular vesicles by microglia to pre-synaptic sites that externalize phosphatidylserine. Using approaches to increase or reduce vesicles production in microglia, by C9orf72 knock out or pharmacological inhibition, respectively, we provided mechanistic evidence linking extracellular vesicle release to pre-synaptic remodelling in neuron-microglia cultures. In C9orf72 knockout mice, we confirmed larger production of microglial extracellular vesicles and showed augmented C1q presynaptic deposition associated with enhanced engulfment by microglia in the early postnatal hippocampus. Finally, we provide evidence that microglia physiologically release more vesicles during the period of postnatal circuit refinement. These findings implicate abnormal release of microglial extracellular vesicles in both neurodevelopmental and age-related disorders characterized by dysregulated microglia-mediated synaptic pruning.
2025
Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - SCITEC - Sede Secondaria Milano - Via M. Bianco
Istituto di Neuroscienze - IN -
C1q
C9orf72 knock out
extracellular vesicles
microglia
synaptic pruning
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/562289
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact