The convergence of biometric and environmental sensing represents a transformative advancement in wearable technology, moving beyond single-parameter tracking towards a holistic, context-aware paradigm for health monitoring. This review comprehensively examines the landscape of multi-modal wearable devices that simultaneously capture physiological data, such as electrodermal activity (EDA), electrocardiogram (ECG), heart rate variability (HRV), and body temperature, alongside environmental exposures, including air quality, ambient temperature, and atmospheric pressure. We analyze the fundamental sensing technologies, data fusion methodologies, and the critical importance of contextualizing physiological signals within an individual’s environment to disambiguate health states. A detailed survey of existing commercial and research-grade devices highlights a growing, yet still limited, integration of these domains. As a central case study, we present an integrated prototype, which exemplifies this approach by fusing data from inertial, environmental, and physiological sensors to generate intuitive, composite indices for stress, fitness, and comfort, visualized via a polar graph. Finally, we discuss the significant challenges and future directions for this field, including clinical validation, data security, and power management, underscoring the potential of convergent sensing to revolutionize personalized, predictive healthcare.

Convergent Sensing: Integrating Biometric and Environmental Monitoring in Next-Generation Wearables

Guarnaccia, Maria
Primo
Writing – Original Draft Preparation
;
Spampinato, Antonio Gianmaria
Secondo
Data Curation
;
Alessi, Enrico
Methodology
;
Cavallaro, Sebastiano
Ultimo
Writing – Original Draft Preparation
2026

Abstract

The convergence of biometric and environmental sensing represents a transformative advancement in wearable technology, moving beyond single-parameter tracking towards a holistic, context-aware paradigm for health monitoring. This review comprehensively examines the landscape of multi-modal wearable devices that simultaneously capture physiological data, such as electrodermal activity (EDA), electrocardiogram (ECG), heart rate variability (HRV), and body temperature, alongside environmental exposures, including air quality, ambient temperature, and atmospheric pressure. We analyze the fundamental sensing technologies, data fusion methodologies, and the critical importance of contextualizing physiological signals within an individual’s environment to disambiguate health states. A detailed survey of existing commercial and research-grade devices highlights a growing, yet still limited, integration of these domains. As a central case study, we present an integrated prototype, which exemplifies this approach by fusing data from inertial, environmental, and physiological sensors to generate intuitive, composite indices for stress, fitness, and comfort, visualized via a polar graph. Finally, we discuss the significant challenges and future directions for this field, including clinical validation, data security, and power management, underscoring the potential of convergent sensing to revolutionize personalized, predictive healthcare.
2026
Istituto per la Ricerca e l'Innovazione Biomedica - IRIB - Sede Secondaria Catania
wearable biosensors
multi-modal sensing
biometric monitoring
environmental sensing
data fusion
digital health
galvanic skin response (GSR)
File in questo prodotto:
File Dimensione Formato  
biosensors-16-00043.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/562293
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact