This paper introduces the concept of the conditional impurity in the framework of tree-based models in order to deal with the analysis of three-way data, where a response variable and a set of predictors are measured on a sample of objects in different occasions.

Conditional classification trees by weighting the Gini Impurity measure

2011

Abstract

This paper introduces the concept of the conditional impurity in the framework of tree-based models in order to deal with the analysis of three-way data, where a response variable and a set of predictors are measured on a sample of objects in different occasions.
2011
Istituto di Ricerca su Innovazione e Servizi per lo Sviluppo - IRISS
978-3-642-11362-8
Binary segmentation
Gini impurity
Three-way data
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/60566
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact