Alpha stable distributions are widely accepted models for impulsive data. Despite their flexibility in modelling varying degrees of impulsiveness and skewness, they fall short of modelling multimodal data. In this work, we present the alpha-stable mixture model which provides a framework for modelling multimodal, skewed and impulsive data. We describe new parameter estimation techniques for this model based on numerical Bayesian techniques which not only can estimate the alpha-stable and mixture parameters, but also the number of components in the mixture. In particular, we employ the reversible jump Markov chain Monte Carlo technique.

Estimation of mixtures of skewed alpha stable processes with unknown number of components

Kuruoglu E E;
2006

Abstract

Alpha stable distributions are widely accepted models for impulsive data. Despite their flexibility in modelling varying degrees of impulsiveness and skewness, they fall short of modelling multimodal data. In this work, we present the alpha-stable mixture model which provides a framework for modelling multimodal, skewed and impulsive data. We describe new parameter estimation techniques for this model based on numerical Bayesian techniques which not only can estimate the alpha-stable and mixture parameters, but also the number of components in the mixture. In particular, we employ the reversible jump Markov chain Monte Carlo technique.
2006
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Grid computing
E-Science
Bioinformatics
File in questo prodotto:
File Dimensione Formato  
prod_91322-doc_130021.pdf

solo utenti autorizzati

Descrizione: Estimation of mixtures of skewed alpha stable processes with unknown number of components
Tipologia: Versione Editoriale (PDF)
Dimensione 420.82 kB
Formato Adobe PDF
420.82 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/61485
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact