In this work, we study the estimation of mixtures of symmetric á-stable distributions using Bayesian inference. We utilise numerical Bayesian sampling techniques such as Markov chain Monte Carlo (MCMC). Our estimation technique is capable of estimating also the number of á-stable components in the mixture in addition to the component parameters and mixing coefficients which is accomplished by the use of the Reversible Jump MCMC (RJMCMC) algorithm.

Estimation of mixtures of symmetric alpha stable processes with unknown number of components

Kuruoglu E E;
2006

Abstract

In this work, we study the estimation of mixtures of symmetric á-stable distributions using Bayesian inference. We utilise numerical Bayesian sampling techniques such as Markov chain Monte Carlo (MCMC). Our estimation technique is capable of estimating also the number of á-stable components in the mixture in addition to the component parameters and mixing coefficients which is accomplished by the use of the Reversible Jump MCMC (RJMCMC) algorithm.
2006
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Bayesian analysis
Reversible jump Markov chain Monte Carlo
Mixture distributions
File in questo prodotto:
File Dimensione Formato  
prod_91323-doc_130024.pdf

solo utenti autorizzati

Descrizione: Estimation of mixtures of symmetric alpha stable processes with unknown number of components
Tipologia: Versione Editoriale (PDF)
Dimensione 142.79 kB
Formato Adobe PDF
142.79 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/61486
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact