We have considered the problem of detection and estimation of compact sources immersed in a background plus instrumental noise. Sparse approximation to signals deals with the problem of finding a representation of a signal as a linear combination of a small number of elements from a set of signals called dictionary. The estimation of the signal leads to a minimization problem for the amplitude associated to the sources. We have developed a methodology that minimizes the lp-norm with a constraint on the goodness-of-fit and we have compared different norms against the matched filter.

Sparse representatios versus the matched filter

2009

Abstract

We have considered the problem of detection and estimation of compact sources immersed in a background plus instrumental noise. Sparse approximation to signals deals with the problem of finding a representation of a signal as a linear combination of a small number of elements from a set of signals called dictionary. The estimation of the signal leads to a minimization problem for the amplitude associated to the sources. We have developed a methodology that minimizes the lp-norm with a constraint on the goodness-of-fit and we have compared different norms against the matched filter.
2009
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Spare representations
Point source extraction
Matched filters
File in questo prodotto:
File Dimensione Formato  
prod_92017-doc_131145.pdf

accesso aperto

Descrizione: Sparse representatios versus the matched filter
Tipologia: Versione Editoriale (PDF)
Dimensione 186.86 kB
Formato Adobe PDF
186.86 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/62364
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact