In recent years, spatio-temporal and moving objects databases have gained considerable interest, due to the diusion of mobile devices (e.g., mobile phones, RFID devices and GPS devices) and of new applications, where the discovery of consumable, concise, and applicable knowledge is the key step. Clearly, in these applications privacy is a concern,since models extracted from this kind of data can reveal the behavior of group of individuals, thus compromising their privacy. Movement data present a new challenge for the privacy-preserving data mining community because of their spatial and temporal characteristics. In this position paper we brie y present an approach for the generalization of movement data that can be adopted for obtaining k-anonymity in spatio-temporal datasets; specif- ically, it can be used to realize a framework for publishing of spatio-temporal data while preserving privacy. We ran a preliminary set of experiments on a real-world trajectory dataset, demonstrating that this method of generalization of trajectories preserves the clustering analysis results.

Movement data anonymity through generalization.

Giannotti F;
2009

Abstract

In recent years, spatio-temporal and moving objects databases have gained considerable interest, due to the diusion of mobile devices (e.g., mobile phones, RFID devices and GPS devices) and of new applications, where the discovery of consumable, concise, and applicable knowledge is the key step. Clearly, in these applications privacy is a concern,since models extracted from this kind of data can reveal the behavior of group of individuals, thus compromising their privacy. Movement data present a new challenge for the privacy-preserving data mining community because of their spatial and temporal characteristics. In this position paper we brie y present an approach for the generalization of movement data that can be adopted for obtaining k-anonymity in spatio-temporal datasets; specif- ically, it can be used to realize a framework for publishing of spatio-temporal data while preserving privacy. We ran a preliminary set of experiments on a real-world trajectory dataset, demonstrating that this method of generalization of trajectories preserves the clustering analysis results.
2009
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-1-60558-853-7
k-anonymity
Privacy
Spatio-temporal
Clustering
File in questo prodotto:
File Dimensione Formato  
prod_92036-doc_131019.pdf

solo utenti autorizzati

Descrizione: Movement data anonymity through generalization
Tipologia: Versione Editoriale (PDF)
Dimensione 997.14 kB
Formato Adobe PDF
997.14 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/62382
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact