Searching for non-text data (eg, images) is mostly done by means of metadata annotations or by extracting the text close to the data. However, supporting real content-based audio-visual search, based on similarity search on features, is significantly more expensive than searching for text. Moreover, the search exhibits linear scalability with respect to the data set size. The European project SAPIR is currently addressing this problem.

The SAPIR Project: Executing A/V Complex Queries in Peer-to-Peer Systems

Gennaro C;Perego R;Rabitti F
2007

Abstract

Searching for non-text data (eg, images) is mostly done by means of metadata annotations or by extracting the text close to the data. However, supporting real content-based audio-visual search, based on similarity search on features, is significantly more expensive than searching for text. Moreover, the search exhibits linear scalability with respect to the data set size. The European project SAPIR is currently addressing this problem.
2007
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Similarity Search
Metric Space
Peer-to-Peer
File in questo prodotto:
File Dimensione Formato  
prod_68420-doc_62236.pdf

solo utenti autorizzati

Descrizione: The SAPIR Project: Executing A/V Complex Queries in Peer-to-Peer Systems
Tipologia: Versione Editoriale (PDF)
Dimensione 248.76 kB
Formato Adobe PDF
248.76 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/62996
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact