Nowadays, people have been increasingly interested in exploiting Web Search Engines (WSEs) not only for having access to simple Web pages, but mainly for carrying out even complex activities, namely Web-mediated processes (or taskflows). Therefore, users' information needs will become more complex, and (Web) search and recommender systems should change accordingly for dealing with this shift. We claim that such taskflows and their composing tasks are implicitly present in users' minds when they interact, thus, with a WSE to access the Web. Our first research challenge is thus to evaluate this belief by analyzing a very large, longterm log of queries submitted to a WSE, and associating meaningful semantic labels with the extracted tasks (i.e., clusters of task-related queries) and taskflows. This large knowledge base constitutes a good starting point for building a model of users' behaviors. The second research challenge is to devise a novel recommender system that goes beyond the simple query suggestion of modern WSEs. Our system has to exploit the knowledge base of Web-mediated processes and the learned model of users' behaviors, to generate complex insights and task-based suggestions to incoming users while they interact with a WSE.

Towards a task-based search and recommender systems

Orlando S;Silvestri F
2010

Abstract

Nowadays, people have been increasingly interested in exploiting Web Search Engines (WSEs) not only for having access to simple Web pages, but mainly for carrying out even complex activities, namely Web-mediated processes (or taskflows). Therefore, users' information needs will become more complex, and (Web) search and recommender systems should change accordingly for dealing with this shift. We claim that such taskflows and their composing tasks are implicitly present in users' minds when they interact, thus, with a WSE to access the Web. Our first research challenge is thus to evaluate this belief by analyzing a very large, longterm log of queries submitted to a WSE, and associating meaningful semantic labels with the extracted tasks (i.e., clusters of task-related queries) and taskflows. This large knowledge base constitutes a good starting point for building a model of users' behaviors. The second research challenge is to devise a novel recommender system that goes beyond the simple query suggestion of modern WSEs. Our system has to exploit the knowledge base of Web-mediated processes and the learned model of users' behaviors, to generate complex insights and task-based suggestions to incoming users while they interact with a WSE.
2010
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-1-4244-6522-4
Database Applications. Data mining
Information Search and Retrieval
Query processing
Recommender systems
Search engines
File in questo prodotto:
File Dimensione Formato  
prod_92095-doc_131853.pdf

accesso aperto

Descrizione: Towards a task-based search and recommender systems
Tipologia: Versione Editoriale (PDF)
Dimensione 258.78 kB
Formato Adobe PDF
258.78 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/63096
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact