A magnetic system is usually described in terms of the exchange coupling between neighboring spins lying on the sites of a given lattice. Our goal here is to account for the unavoidable quantum effects due to the further coupling with the vibrations of the ions constituting the lattice. A Caldeira-Leggett scheme allows one to treat such effects through the analysis of the associated influence action, obtained after tracing-out the phonons. In a physically sound model, it turns out that one must deal with an environmental coupling which is nonlinear in the system's variables. The corresponding path integral can be dealt with by suitably extending the pure-quantum self-consistent harmonic approximation. In this way one can obtain extended phase diagrams for magnetic phase transitions, accounting for the environmental interaction.

Environmental effects on the thermodynamics of quantum spin systems

Vaia R;
2008

Abstract

A magnetic system is usually described in terms of the exchange coupling between neighboring spins lying on the sites of a given lattice. Our goal here is to account for the unavoidable quantum effects due to the further coupling with the vibrations of the ions constituting the lattice. A Caldeira-Leggett scheme allows one to treat such effects through the analysis of the associated influence action, obtained after tracing-out the phonons. In a physically sound model, it turns out that one must deal with an environmental coupling which is nonlinear in the system's variables. The corresponding path integral can be dealt with by suitably extending the pure-quantum self-consistent harmonic approximation. In this way one can obtain extended phase diagrams for magnetic phase transitions, accounting for the environmental interaction.
2008
Istituto dei Sistemi Complessi - ISC
981-283-726-4
Environmental coupling
Influence action
Caldeira-Leggett model
Magnetic phase transitions
Magnetic systems
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/63675
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact