We describe here a methodology to combine two different techniques for Semantic Relation Extraction from texts. On the one hand, generic lexicosyntactic patterns are applied to the linguistically analyzed corpus to detect a first set of pairs of co-occurring words, possibly involved in "syntagmatic" relations. On the other hand, a statistical unsupervised association system is used to obtain a second set of pairs of "distributionally similar" terms, that appear to occur in similar contexts, thus possibly involved in "paradigmatic" relations. The approach aims at learning ontological information by filtering the candidate relations obtained through generic lexico-syntactic patterns and by labelling the anonymous relations obtained through the statistical system. The resulting set of relations can be used to enrich existing ontologies and for semantic annotation of documents or web pages.

Combining statistical techniques and lexico-syntactic patterns for semantic relations extraction from text

Giovannetti E;Marchi S;Montemagni S
2008

Abstract

We describe here a methodology to combine two different techniques for Semantic Relation Extraction from texts. On the one hand, generic lexicosyntactic patterns are applied to the linguistically analyzed corpus to detect a first set of pairs of co-occurring words, possibly involved in "syntagmatic" relations. On the other hand, a statistical unsupervised association system is used to obtain a second set of pairs of "distributionally similar" terms, that appear to occur in similar contexts, thus possibly involved in "paradigmatic" relations. The approach aims at learning ontological information by filtering the candidate relations obtained through generic lexico-syntactic patterns and by labelling the anonymous relations obtained through the statistical system. The resulting set of relations can be used to enrich existing ontologies and for semantic annotation of documents or web pages.
Campo DC Valore Lingua
dc.authority.orgunit Istituto di linguistica computazionale "Antonio Zampolli" - ILC -
dc.authority.people Giovannetti E it
dc.authority.people Marchi S it
dc.authority.people Montemagni S it
dc.collection.id.s 71c7200a-7c5f-4e83-8d57-d3d2ba88f40d *
dc.collection.name 04.01 Contributo in Atti di convegno *
dc.contributor.appartenenza Istituto di linguistica computazionale "Antonio Zampolli" - ILC *
dc.contributor.appartenenza.mi 918 *
dc.date.accessioned 2024/02/19 19:40:09 -
dc.date.available 2024/02/19 19:40:09 -
dc.date.issued 2008 -
dc.description.abstracteng We describe here a methodology to combine two different techniques for Semantic Relation Extraction from texts. On the one hand, generic lexicosyntactic patterns are applied to the linguistically analyzed corpus to detect a first set of pairs of co-occurring words, possibly involved in "syntagmatic" relations. On the other hand, a statistical unsupervised association system is used to obtain a second set of pairs of "distributionally similar" terms, that appear to occur in similar contexts, thus possibly involved in "paradigmatic" relations. The approach aims at learning ontological information by filtering the candidate relations obtained through generic lexico-syntactic patterns and by labelling the anonymous relations obtained through the statistical system. The resulting set of relations can be used to enrich existing ontologies and for semantic annotation of documents or web pages. -
dc.description.affiliations ILC-CNR -
dc.description.allpeople Giovannetti, E; Marchi, S; Montemagni, S -
dc.description.allpeopleoriginal Giovannetti E.; Marchi S.; Montemagni S. -
dc.description.fulltext none en
dc.description.numberofauthors 3 -
dc.identifier.scopus 2-s2.0-84874234733 -
dc.identifier.uri https://hdl.handle.net/20.500.14243/65082 -
dc.identifier.url http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-426/swap2008_submission_54.pdf -
dc.relation.alleditors Aldo Gangemi, Johannes Keizer, Valentina Presutti, Heiko Stoermer -
dc.relation.conferencedate 15-17 December 2008 -
dc.relation.conferencename SWAP 2008 - Semantic Web Applications and Perspectives -
dc.relation.conferenceplace Roma -
dc.subject.keywords Ontology Learning from Text -
dc.subject.keywords Semantic Relation Extraction -
dc.subject.keywords Lexico-syntactic Patterns -
dc.subject.keywords Distributional Similarity -
dc.subject.singlekeyword Ontology Learning from Text *
dc.subject.singlekeyword Semantic Relation Extraction *
dc.subject.singlekeyword Lexico-syntactic Patterns *
dc.subject.singlekeyword Distributional Similarity *
dc.title Combining statistical techniques and lexico-syntactic patterns for semantic relations extraction from text en
dc.type.driver info:eu-repo/semantics/conferenceObject -
dc.type.full 04 Contributo in convegno::04.01 Contributo in Atti di convegno it
dc.type.miur 273 -
dc.type.referee Sì, ma tipo non specificato -
dc.ugov.descaux1 84706 -
iris.orcid.lastModifiedDate 2024/06/12 10:17:31 *
iris.orcid.lastModifiedMillisecond 1718180251464 *
iris.scopus.extIssued 2008 -
iris.scopus.extTitle Combining statistical techniques and lexico-syntactic patterns for semantic relations extraction from text -
iris.scopus.ideLinkStatusDate 2024/06/12 10:17:31 *
iris.scopus.ideLinkStatusMillisecond 1718180251504 *
iris.sitodocente.maxattempts 4 -
scopus.authority.anceserie CEUR WORKSHOP PROCEEDINGS###1613-0073 *
scopus.category 1700 *
scopus.contributor.affiliation Consiglio Nazionale delle Ricerche -
scopus.contributor.affiliation Consiglio Nazionale delle Ricerche -
scopus.contributor.affiliation Consiglio Nazionale delle Ricerche -
scopus.contributor.afid 60008941 -
scopus.contributor.afid 60008941 -
scopus.contributor.afid 60008941 -
scopus.contributor.auid 55604835100 -
scopus.contributor.auid 27567818000 -
scopus.contributor.auid 15056781100 -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.dptid -
scopus.contributor.dptid -
scopus.contributor.dptid -
scopus.contributor.name Emiliano -
scopus.contributor.name Simone -
scopus.contributor.name Simonetta -
scopus.contributor.subaffiliation Istituto di Linguistica Computazionale; -
scopus.contributor.subaffiliation Istituto di Linguistica Computazionale; -
scopus.contributor.subaffiliation Istituto di Linguistica Computazionale; -
scopus.contributor.surname Giovannetti -
scopus.contributor.surname Marchi -
scopus.contributor.surname Montemagni -
scopus.date.issued 2008 *
scopus.description.abstracteng We describe here a methodology to combine two different techniques for Semantic Relation Extraction from texts. On the one hand, generic lexicosyntactic patterns are applied to the linguistically analyzed corpus to detect a first set of pairs of co-occurring words, possibly involved in "syntagmatic" relations. On the other hand, a statistical unsupervised association system is used to obtain a second set of pairs of "distributionally similar" terms, that appear to occur in similar contexts, thus possibly involved in "paradigmatic" relations. The approach aims at learning ontological information by filtering the candidate relations obtained through generic lexico-syntactic patterns and by labelling the anonymous relations obtained through the statistical system. The resulting set of relations can be used to enrich existing ontologies and for semantic annotation of documents or web pages. *
scopus.description.allpeopleoriginal Giovannetti E.; Marchi S.; Montemagni S. *
scopus.differences scopus.relation.conferencename *
scopus.differences scopus.authority.anceserie *
scopus.differences scopus.subject.keywords *
scopus.differences scopus.relation.conferencedate *
scopus.differences scopus.relation.conferenceplace *
scopus.differences scopus.language.iso *
scopus.differences scopus.relation.volume *
scopus.document.type cp *
scopus.document.types cp *
scopus.identifier.pui 368392587 *
scopus.identifier.scopus 2-s2.0-84874234733 *
scopus.journal.sourceid 21100218356 *
scopus.language.iso eng *
scopus.relation.conferencedate 2008 *
scopus.relation.conferencename 5th Workshop on Semantic Web Applications and Perspectives, SWAP 2008 *
scopus.relation.conferenceplace Rome, ita *
scopus.relation.volume 426 *
scopus.subject.keywords Distributional similarity; Lexico-syntactic patterns; Ontology learning from text; Semantic relation extraction; *
scopus.title Combining statistical techniques and lexico-syntactic patterns for semantic relations extraction from text *
scopus.titleeng Combining statistical techniques and lexico-syntactic patterns for semantic relations extraction from text *
Appare nelle tipologie: 04.01 Contributo in Atti di convegno
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/65082
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact