The rotational spectra of four (GT, TT, TG, and GG) of the five possible conformers of 1-fluorobutane have been assigned by combining free jet and conventional microwave spectroscopy. The geometry optimization was performed at the MP2 (full) level of theory with the 6-31G (d) and 6-311G id, pi basis sets and by using the B3LYP (3df, 3pd) density functional method. The relative stability of the five rotamers is calculated at the QCISD (T)/6-311G (d, p) level of theory. In spite of the fact that ab initio calculations indicated the unobserved GG' conformer to be more stable than at least one of the observed conformers it was not possible to detect its rotational spectrum. GT and TC are the most and the least stable species, respectively. The rotational spectra of several vibrational satellites of the four conformers have been studied by conventional microwave spectroscopy. The overall conformational equilibrium is governed by the two-dimensional potential energy surface of the skeletal torsions MeC-CC and FC-CC, which have been evaluated by a flexible model analysis, based on the experimental values of the relative conformational and vibrational energy spacings, and on the shifts of second moments of inertia upon conformational change and vibrational excitation. The relative energy of the fifth stable conformer (GG') was determined to be 333 cm(-1) from flexible model calculations, and to be 271 cm(-1) from the most accurate ab initio calculations.

Conformational equilibrium and potential energy surface of 1-fluorobutane by microwave spectroscopy and ab initio calculations

A Degli Esposti;
2000

Abstract

The rotational spectra of four (GT, TT, TG, and GG) of the five possible conformers of 1-fluorobutane have been assigned by combining free jet and conventional microwave spectroscopy. The geometry optimization was performed at the MP2 (full) level of theory with the 6-31G (d) and 6-311G id, pi basis sets and by using the B3LYP (3df, 3pd) density functional method. The relative stability of the five rotamers is calculated at the QCISD (T)/6-311G (d, p) level of theory. In spite of the fact that ab initio calculations indicated the unobserved GG' conformer to be more stable than at least one of the observed conformers it was not possible to detect its rotational spectrum. GT and TC are the most and the least stable species, respectively. The rotational spectra of several vibrational satellites of the four conformers have been studied by conventional microwave spectroscopy. The overall conformational equilibrium is governed by the two-dimensional potential energy surface of the skeletal torsions MeC-CC and FC-CC, which have been evaluated by a flexible model analysis, based on the experimental values of the relative conformational and vibrational energy spacings, and on the shifts of second moments of inertia upon conformational change and vibrational excitation. The relative energy of the fifth stable conformer (GG') was determined to be 333 cm(-1) from flexible model calculations, and to be 271 cm(-1) from the most accurate ab initio calculations.
2000
MOLECULAR-ORBITAL METHODS
1-CHLOROBUTANE
microwave spectroscopy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/6566
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact