Experimental studies have been carried out in a fractured coastal aquifer of the Salento region (Nardò, Italy), which has been subjected to 12,000 m3/day of treated municipal waste water injected into a natural sinkhole since 1991. The analytical parameters of ground water sampled in 30 monitoring wells in the area downgradient from the sinkhole, taking into account the direction of ground water flow, have been compared before and after injection. The water table mound (1.5 m), the reduction of sea water extent (2km), and the spreading of injected pollutants were evaluated by means of a mathematical model. The predicted values in the monitoring wells were adjusted to inorganic nitrogen biodegradation using transformation rates developed in laboratory tests. After 10 years, the injection has increased the volume of the available resource for agricultural and drinking water use, without any notable decrease in the preexisting ground water quality. Moreover, to preserve water resources from pollution, the mathematical model allowed the maximum constituent concentrations (standards) in waste water reclamation for recharge to be identified. A precautionary area around the sinkhole was also defined so that withdrawal prohibition could be implemented to avoid risks to human health.
Assessment of Water Quality After 10 Years of Reclaimed Water Injection: The Nardò Fractured Aquifer (Southern Italy)
Costantino Masciopinto;
2002
Abstract
Experimental studies have been carried out in a fractured coastal aquifer of the Salento region (Nardò, Italy), which has been subjected to 12,000 m3/day of treated municipal waste water injected into a natural sinkhole since 1991. The analytical parameters of ground water sampled in 30 monitoring wells in the area downgradient from the sinkhole, taking into account the direction of ground water flow, have been compared before and after injection. The water table mound (1.5 m), the reduction of sea water extent (2km), and the spreading of injected pollutants were evaluated by means of a mathematical model. The predicted values in the monitoring wells were adjusted to inorganic nitrogen biodegradation using transformation rates developed in laboratory tests. After 10 years, the injection has increased the volume of the available resource for agricultural and drinking water use, without any notable decrease in the preexisting ground water quality. Moreover, to preserve water resources from pollution, the mathematical model allowed the maximum constituent concentrations (standards) in waste water reclamation for recharge to be identified. A precautionary area around the sinkhole was also defined so that withdrawal prohibition could be implemented to avoid risks to human health.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.