The 2-D version of the non-hydrostatic fully compressible model MOLOCH developed at ISAC-CNR was used in idealized set-up to study the start-up and finite amplitude evolution of symmetric instability. The unstable basic state was designed by numerical integration of the equation which defines saturated equivalent potential vorticity qe*. We present the structure and growth rates of the linear modes both for a supersaturated initial state ("super"-linear mode) and for a saturated one ("pseudo"-linear mode) and the modifications induced on the base state by their finite amplitude evolution.

Numerical study of two-dimensional moist symmetric instability

Fantini M;Malguzzi P
2008

Abstract

The 2-D version of the non-hydrostatic fully compressible model MOLOCH developed at ISAC-CNR was used in idealized set-up to study the start-up and finite amplitude evolution of symmetric instability. The unstable basic state was designed by numerical integration of the equation which defines saturated equivalent potential vorticity qe*. We present the structure and growth rates of the linear modes both for a supersaturated initial state ("super"-linear mode) and for a saturated one ("pseudo"-linear mode) and the modifications induced on the base state by their finite amplitude evolution.
2008
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/67000
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact