Digital Holographic Microscope has been employed to obtain an accurate characterization of a micro-hotplate for gas sensing applications. The fabrication of these sensors needs different materials, with different properties and different technological processes, which involve high temperature treatments. Consequently, the structure is affected by the presence of residual stresses, appearing in form of undesired bowing of the membrane. Moreover, when the temperature of the sensor increases, a further warpage of the structure is observed. DHM allows to evaluate, with high accuracy, deformations due to the residual stress and how these deformations are affected by thermal loads. In particular, profiles of the structure have been evaluated both in quasi-static condition and the profile variation due to the biasing of the heater resistor has been measured.

Digital holographic microscope for thermal characterization of silicon microhotplates for gas sensor

Coppola G;P Maccagnani;
2004

Abstract

Digital Holographic Microscope has been employed to obtain an accurate characterization of a micro-hotplate for gas sensing applications. The fabrication of these sensors needs different materials, with different properties and different technological processes, which involve high temperature treatments. Consequently, the structure is affected by the presence of residual stresses, appearing in form of undesired bowing of the membrane. Moreover, when the temperature of the sensor increases, a further warpage of the structure is observed. DHM allows to evaluate, with high accuracy, deformations due to the residual stress and how these deformations are affected by thermal loads. In particular, profiles of the structure have been evaluated both in quasi-static condition and the profile variation due to the biasing of the heater resistor has been measured.
2004
Istituto per la Microelettronica e Microsistemi - IMM
0-8194-5380-3
digital holography characterization
silicon micro-hotplate
gas sensor
residual stress
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/69309
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact