The work presented in this paper aims to combine Latent Semantic Analysis methodology, common sense and traditional knowledge representation in order to improve the dialogue capabilities of a conversational agent. In our approach the agent brain is characterized by two areas: a "rational area", composed by a structured, rule-based knowledge base, and an "associative area", obtained through a data-driven semantic space. Concepts are mapped in this space and their mutual geometric distance is related to their conceptual similarity. The geometric distance between concepts implicitly defines a sub-symbolic relationship net, which can be seen as a new "subsymbolic semantic layer" automatically added to the Cyc ontology. Users queries can also be mapped in the same conceptual space, and evoke similar ontology concepts. As a result the agent can exploit this feature, attempting to retrieve ontological concepts that are not easily reachable by means of the traditional ontology reasoning engine.

Sub-Symbolic Semantic Layer in Cyc for Intuitive Chat-Bots

Pilato Giovanni;Augello Agnese;
2007

Abstract

The work presented in this paper aims to combine Latent Semantic Analysis methodology, common sense and traditional knowledge representation in order to improve the dialogue capabilities of a conversational agent. In our approach the agent brain is characterized by two areas: a "rational area", composed by a structured, rule-based knowledge base, and an "associative area", obtained through a data-driven semantic space. Concepts are mapped in this space and their mutual geometric distance is related to their conceptual similarity. The geometric distance between concepts implicitly defines a sub-symbolic relationship net, which can be seen as a new "subsymbolic semantic layer" automatically added to the Cyc ontology. Users queries can also be mapped in the same conceptual space, and evoke similar ontology concepts. As a result the agent can exploit this feature, attempting to retrieve ontological concepts that are not easily reachable by means of the traditional ontology reasoning engine.
2007
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
978-0-7695-2997-4
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/70041
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 8
social impact