One of the main goals of molecular electronics is to achieve electronic functions from devices consisting of tailored organic molecules connecting two metal electrodes. The fabrication of nanometre-scale spaced electrodes still results in expensive, and often scarcely reproducible, devices. On the other hand, the ‘conductance’ of long organic molecules—generally dominated by the tunnelling mechanism—is very poor. Here, we show that by incorporating a large number of metal centres into rigid molecular backbones we can obtain very long (up to 40 nm) and highly ‘conductive’ molecular wires. The metal-centre molecular wires are assembled in situ on metal surfaces via a sequential stepwise coordination of metal ions by terpyridine-based ligands. They form highly ordered molecular films of elevated mechanical robustness. The electrical properties, characterized by a junction based on Hg electrodes5,6, indicate that the ‘conductance’ of these metal-centre molecular wires does not decrease significantly even for very long molecular wires, and depends on the nature of the incorporated redox centre. The outstanding electrical and mechanical characteristics of these easy-to-assemble molecular systems open the door to a new generation of molecular wires, able to bridge large-gap electrodes, and to form robust films for organic electronics.

Highly conductive 40-nm-long molecular wires assembled by stepwise incorporation of metal centres

Cavazzini Marco;Quici Silvio;
2009

Abstract

One of the main goals of molecular electronics is to achieve electronic functions from devices consisting of tailored organic molecules connecting two metal electrodes. The fabrication of nanometre-scale spaced electrodes still results in expensive, and often scarcely reproducible, devices. On the other hand, the ‘conductance’ of long organic molecules—generally dominated by the tunnelling mechanism—is very poor. Here, we show that by incorporating a large number of metal centres into rigid molecular backbones we can obtain very long (up to 40 nm) and highly ‘conductive’ molecular wires. The metal-centre molecular wires are assembled in situ on metal surfaces via a sequential stepwise coordination of metal ions by terpyridine-based ligands. They form highly ordered molecular films of elevated mechanical robustness. The electrical properties, characterized by a junction based on Hg electrodes5,6, indicate that the ‘conductance’ of these metal-centre molecular wires does not decrease significantly even for very long molecular wires, and depends on the nature of the incorporated redox centre. The outstanding electrical and mechanical characteristics of these easy-to-assemble molecular systems open the door to a new generation of molecular wires, able to bridge large-gap electrodes, and to form robust films for organic electronics.
2009
Istituto di Scienze e Tecnologie Molecolari - ISTM - Sede Milano
File in questo prodotto:
File Dimensione Formato  
prod_48253-doc_19509.pdf

non disponibili

Descrizione: Highly conductive 40-nm-long molecular wires assembled by stepwise incorporation of metal centres
Dimensione 625.4 kB
Formato Adobe PDF
625.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/71445
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 256
social impact