Titanium-metal-matrix composites (Ti-MMC) are materials with very large specific resistance and potential operative temperature up to 800° C. At present these composites are produced by Hot Isostatic Pressing (HIP), a reliable but expensive manufacturing method. To cut production costs, Centro Sviluppo Materiali SpA (CSM) has developed and patented an experimental plant for co-rolling at high temperature sheets of titanium alloy and silicon carbide monofilaments fabrics. The experimental Roll Diffusion Bonding (RDB) pilot plant permits a reduction of process costs of about 40% with respect to the HIP process. This work reports the results of microstructural and mechanical examinations carried out on composites realized by RDB and HIP. The comparison shows that the fibre-matrix interface is stable in both the composites while the mechanical properties of RDB composite are better due to its smaller grain size and high dislocation density.

Comparision between roll diffusion bonding and host isostatic pressing production processes of Ti6A14V-SiC f metal matrix composites

R Donnini;S Kaciulis;A Mezzi
2011

Abstract

Titanium-metal-matrix composites (Ti-MMC) are materials with very large specific resistance and potential operative temperature up to 800° C. At present these composites are produced by Hot Isostatic Pressing (HIP), a reliable but expensive manufacturing method. To cut production costs, Centro Sviluppo Materiali SpA (CSM) has developed and patented an experimental plant for co-rolling at high temperature sheets of titanium alloy and silicon carbide monofilaments fabrics. The experimental Roll Diffusion Bonding (RDB) pilot plant permits a reduction of process costs of about 40% with respect to the HIP process. This work reports the results of microstructural and mechanical examinations carried out on composites realized by RDB and HIP. The comparison shows that the fibre-matrix interface is stable in both the composites while the mechanical properties of RDB composite are better due to its smaller grain size and high dislocation density.
2011
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
Hot Isostatic Pressing; Mechanical properties; Microstructure; Roll Diffusion Bonding; Ti composites
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/72699
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact