In this article, we report the design and development of a plastic modular chip suitable for one-shot human papillomavirus (HPV) diagnostics, namely detection of the viral presence and relative genotyping, by two sequential steps performed directly on the same device. The device is composed of two modular and disposable plastic units that can be assembled or used separately. The first module is represented by a polydimethylsiloxane (PDMS) microreactor that is exploited for real-time polymerase chain reaction (PCR) and, thus, is suitable for detecting the presence of virus. The second unit is a PDMS microwell alpha-ray that allows virus genotyping by a colorimetric assay, based on DNA hybridization technology developed on plastic, requiring simple inspection by the naked eye. The two modules can be easily coupled to reusable hardware, enabling the heating/cooling processes and the real-time detection of HPV. By coupling real-time assay and colorimetric genotyping on the same chip, the assembled device may provide a low-cost tool for HPV diagnostics, thereby favoring the prediction of cancer risk in patients. (C) 2009 Elsevier Inc. All rights reserved.

Modular plastic chip for one-shot human papillomavirus diagnostic analysis

Rinaldi R;
2010

Abstract

In this article, we report the design and development of a plastic modular chip suitable for one-shot human papillomavirus (HPV) diagnostics, namely detection of the viral presence and relative genotyping, by two sequential steps performed directly on the same device. The device is composed of two modular and disposable plastic units that can be assembled or used separately. The first module is represented by a polydimethylsiloxane (PDMS) microreactor that is exploited for real-time polymerase chain reaction (PCR) and, thus, is suitable for detecting the presence of virus. The second unit is a PDMS microwell alpha-ray that allows virus genotyping by a colorimetric assay, based on DNA hybridization technology developed on plastic, requiring simple inspection by the naked eye. The two modules can be easily coupled to reusable hardware, enabling the heating/cooling processes and the real-time detection of HPV. By coupling real-time assay and colorimetric genotyping on the same chip, the assembled device may provide a low-cost tool for HPV diagnostics, thereby favoring the prediction of cancer risk in patients. (C) 2009 Elsevier Inc. All rights reserved.
2010
Istituto Nanoscienze - NANO
POLYMERASE-CHAIN-REACTION;
REAL-TIME PCR
REVERSE HYBRIDIZATION
CLINICAL-EVALUATION
HIGH-RISK
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/73177
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact