Proteins able to recognize inorganic surfaces are of paramount importance for living organisms. Mimicking nature, surface-recognizing proteins and peptides have also been man-made by combinatorial biochemistry. However, to date the recognition mechanisms remain elusive, and the underlying physico- chemical principles are still unknown. Selectivity of gold-binding peptides (cysteine-free and rich in hydroxyl amino acids) is particularly puzzling, since the most relevant gold surface, Au(111), is known to be chemically inert and atomically flat. Using atomistic first-principle simulations we show that weak chemical interactions of dative-bond character confer to a prototype secondary structure (an antiparallel b-sheet made of hydroxyl amino acids) and its hydration layer the capability of discriminating among gold surface sites. Our results highlight the unexpected role of hydration water in this process, suggesting that hydrophilic amino acids and their hydration shell cooperate to contribute to protein-gold surface recognition

Hydroxyl-Rich beta-Sheet Adhesion to the Gold Surface in Water by First-Principle Simulations

Calzolari A;G Cicero;R Di Felice;A Catellani;S Corni
2010

Abstract

Proteins able to recognize inorganic surfaces are of paramount importance for living organisms. Mimicking nature, surface-recognizing proteins and peptides have also been man-made by combinatorial biochemistry. However, to date the recognition mechanisms remain elusive, and the underlying physico- chemical principles are still unknown. Selectivity of gold-binding peptides (cysteine-free and rich in hydroxyl amino acids) is particularly puzzling, since the most relevant gold surface, Au(111), is known to be chemically inert and atomically flat. Using atomistic first-principle simulations we show that weak chemical interactions of dative-bond character confer to a prototype secondary structure (an antiparallel b-sheet made of hydroxyl amino acids) and its hydration layer the capability of discriminating among gold surface sites. Our results highlight the unexpected role of hydration water in this process, suggesting that hydrophilic amino acids and their hydration shell cooperate to contribute to protein-gold surface recognition
2010
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
Istituto Nanoscienze - NANO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/73277
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact