The nucleation of two kinds of crystalline nanoparticles, zinc sulfide (ZnS), and cadmium sulfide (CdS), is achieved directly into specific sites of polymer matrices after their irradiation with UV laser pulses. The starting samples consist of polymers doped with precursors of Zn or Cd thiolate that are proved to decompose after the absorption of UV light, resulting into the nanoparticles formation. The growth of the crystalline nanostructures is followed throughout the irradiation of the samples with successive incident pulses, by different methods, such as transmission electron microscopy, atomic force microscopy, confocal microscopy, and X-ray diffraction. Special attention is paid to the difference of the formation pathways of the two kinds of nanoparticles studied, because the Cd thiolate precursor exhibits much higher absorption efficiency than the Zn thiolate one, at the applied UV wavelength. Indeed, CdS nanoparticles become evident after the very first incident UV pulses, whereas the formation of ZnS nanocrystals requires rather prolonged irradiation, always through a macroscopically nondestructive procedure for the polymer matrix

Comparison between laser-induced nucleation of ZnS and CdS nanocrystals directly into polymer matrices

L Blasi;M De Giorgi;
2010

Abstract

The nucleation of two kinds of crystalline nanoparticles, zinc sulfide (ZnS), and cadmium sulfide (CdS), is achieved directly into specific sites of polymer matrices after their irradiation with UV laser pulses. The starting samples consist of polymers doped with precursors of Zn or Cd thiolate that are proved to decompose after the absorption of UV light, resulting into the nanoparticles formation. The growth of the crystalline nanostructures is followed throughout the irradiation of the samples with successive incident pulses, by different methods, such as transmission electron microscopy, atomic force microscopy, confocal microscopy, and X-ray diffraction. Special attention is paid to the difference of the formation pathways of the two kinds of nanoparticles studied, because the Cd thiolate precursor exhibits much higher absorption efficiency than the Zn thiolate one, at the applied UV wavelength. Indeed, CdS nanoparticles become evident after the very first incident UV pulses, whereas the formation of ZnS nanocrystals requires rather prolonged irradiation, always through a macroscopically nondestructive procedure for the polymer matrix
2010
Istituto di Nanotecnologia - NANOTEC
Istituto Nanoscienze - NANO
TRUCTURAL-CHARACTERIZATION; SEMICONDUCTOR PARTICLES; CONTROLLABLE SYNTHESIS
NANOCOMPOSITE HYBRIDS
THERMOLYTIC SYNTHESIS
DECOMPOSITION
NANOBELTS; NANORODS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/73342
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact