We employ simple geometrical rules to design a set of nanotopographies able to interfere with focal adhesion establishment during neuronal differentiation. Exploiting nanoimprint lithography techniques on cyclic-olefin-copolymer films, we demonstrate that by varying a single topographical parameter the orientation and maturation of focal adhesions can be finely modulated yielding independent control over the final number and the outgrowth direction of neurites. Taken together, this report provides a novel and promising approach to the rational design of biocompatible textured substrates for tissue engineering applications.

Nanotopographic Control of Neuronal Polarity

M Cecchini;I Tonazzini;D Pisignano;F Beltram
2011

Abstract

We employ simple geometrical rules to design a set of nanotopographies able to interfere with focal adhesion establishment during neuronal differentiation. Exploiting nanoimprint lithography techniques on cyclic-olefin-copolymer films, we demonstrate that by varying a single topographical parameter the orientation and maturation of focal adhesions can be finely modulated yielding independent control over the final number and the outgrowth direction of neurites. Taken together, this report provides a novel and promising approach to the rational design of biocompatible textured substrates for tissue engineering applications.
2011
Istituto Nanoscienze - NANO
Istituto Nanoscienze - NANO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/73398
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 133
  • ???jsp.display-item.citation.isi??? 131
social impact