A novel approach is presented herein to study the intestinal absorption of mycotoxins by using a laboratory model that mimics the metabolic processes of the gastrointestinal (GI) tract of healthy pigs. This model was used to evaluate the small-intestinal absorption of zearalenone from contaminated wheat (4.1 mg/kg) and the effectiveness of activated carbon and cholestyramine at four inclusion levels (0.25%, 0.5%, 1% and 2%) in reducing toxin absorption. Approximately 32% of ZEA intake (247 µg) was released from the food matrix during six hours of digestion and was rapidly absorbed at intestinal level. A significant reduction of intestinal absorption of ZEA was found after inclusion of activated carbon or cholestyramine, even at the lowest dose of adsorbents, with a more pronounced effect exhibited by activated carbon. In particular, when 2% of activated carbon or cholestyramine was added to the meal the ZEA intestinal absorption was lowered from 32% of ZEA intake to 5% and 16%, respectively. The sequestering effect of both adsorbents took place already during the first two hours of digestion and persisted during the rest of the experiment. The GI-model is a rapid and physiologically relevant method to test the efficacy of adsorbent materials in binding mycotoxins and can be used to pre-screen mycotoxin/adsorbent combinations as an alternative to animal experiments.

Assessing the zearalenone-binding activity of adsorbent materials during passage through a dynamic in vitro gastrointestinal model.

Avantaggiato G;Visconti A
2003

Abstract

A novel approach is presented herein to study the intestinal absorption of mycotoxins by using a laboratory model that mimics the metabolic processes of the gastrointestinal (GI) tract of healthy pigs. This model was used to evaluate the small-intestinal absorption of zearalenone from contaminated wheat (4.1 mg/kg) and the effectiveness of activated carbon and cholestyramine at four inclusion levels (0.25%, 0.5%, 1% and 2%) in reducing toxin absorption. Approximately 32% of ZEA intake (247 µg) was released from the food matrix during six hours of digestion and was rapidly absorbed at intestinal level. A significant reduction of intestinal absorption of ZEA was found after inclusion of activated carbon or cholestyramine, even at the lowest dose of adsorbents, with a more pronounced effect exhibited by activated carbon. In particular, when 2% of activated carbon or cholestyramine was added to the meal the ZEA intestinal absorption was lowered from 32% of ZEA intake to 5% and 16%, respectively. The sequestering effect of both adsorbents took place already during the first two hours of digestion and persisted during the rest of the experiment. The GI-model is a rapid and physiologically relevant method to test the efficacy of adsorbent materials in binding mycotoxins and can be used to pre-screen mycotoxin/adsorbent combinations as an alternative to animal experiments.
2003
Istituto di Scienze delle Produzioni Alimentari - ISPA
micotossine
biodisponibilità
detossificazione
materiali adsorbenti
modelli in vitro
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/73589
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact