Until now, only a small amount of information is available about tomato allergens. In the present study, a glycosylated allergen of tomato (Lycopersicon esculentum), Lyc e 2, was purified from tomato extract by a two-step FPLC method. The cDNA of two different isoforms of the protein, Lyc e 2.01 and Lyc e 2.02, was cloned into the bacterial expression vector pET100D. The recombinant proteins were purified by electroelution and refolded. The IgE reactivity of both the recombinant and the natural proteins was investigated with sera of patients with adverse reactions to tomato. IgE-binding to natural Lyc e 2 was completely inhibited by the pineapple stem bromelain glycopeptide MUXF (Man alpha 1-6(Xyl beta 1-2)Man beta 1-4GlcNAc beta 1-4(Fuc alpha 1-3)GlcNAc). Accordingly, the nonglycosylated recombinant protein isoforms did not bind IgE of tomato allergic patients. Hence, we concluded that the IgE reactivity of the natural protein mainly depends on the glycan structure. The amino acid sequences of both isoforms of the allergen contain four possible N-glycosylation sites. By application of MALDI-TOF mass spectrometry the predominant glycan structure of the natural allergen was identified as MMXF (Man alpha 1-6(Man alpha 1-3)(Xyl beta 1-2)Man beta 1-4GlcNAc beta 1-4(Fuc alpha 1-3) GlcNAc). Natural Lyc e 2, but not the recombinant protein was able to trigger histamine release from passively sensitized basophils of patients with IgE to carbohydrate determinants, demonstrating that glycan structures can be important for the biological activity of allergens.

Molecular Characterization and Allergenic Activity of Lyc e 2 (b-fructofuranosidase), a Glycosylated Allergen of Tomato

Conti A;
2003

Abstract

Until now, only a small amount of information is available about tomato allergens. In the present study, a glycosylated allergen of tomato (Lycopersicon esculentum), Lyc e 2, was purified from tomato extract by a two-step FPLC method. The cDNA of two different isoforms of the protein, Lyc e 2.01 and Lyc e 2.02, was cloned into the bacterial expression vector pET100D. The recombinant proteins were purified by electroelution and refolded. The IgE reactivity of both the recombinant and the natural proteins was investigated with sera of patients with adverse reactions to tomato. IgE-binding to natural Lyc e 2 was completely inhibited by the pineapple stem bromelain glycopeptide MUXF (Man alpha 1-6(Xyl beta 1-2)Man beta 1-4GlcNAc beta 1-4(Fuc alpha 1-3)GlcNAc). Accordingly, the nonglycosylated recombinant protein isoforms did not bind IgE of tomato allergic patients. Hence, we concluded that the IgE reactivity of the natural protein mainly depends on the glycan structure. The amino acid sequences of both isoforms of the allergen contain four possible N-glycosylation sites. By application of MALDI-TOF mass spectrometry the predominant glycan structure of the natural allergen was identified as MMXF (Man alpha 1-6(Man alpha 1-3)(Xyl beta 1-2)Man beta 1-4GlcNAc beta 1-4(Fuc alpha 1-3) GlcNAc). Natural Lyc e 2, but not the recombinant protein was able to trigger histamine release from passively sensitized basophils of patients with IgE to carbohydrate determinants, demonstrating that glycan structures can be important for the biological activity of allergens.
2003
Istituto di Scienze delle Produzioni Alimentari - ISPA
File in questo prodotto:
File Dimensione Formato  
prod_46080-doc_173.pdf

non disponibili

Descrizione: Molecular Characterization and Allergenic Activity of Lyc e 2 (b-fructofuranosidase), a Glycosylated Allergen of Tomato
Dimensione 432.36 kB
Formato Adobe PDF
432.36 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/73615
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact