Purpose: Application of a comprehensive, user-friendly, digital computer circulatory model to estimate hemodynamic and ventricular variables. Methods: The closed-loop lumped parameter circulatory model represents the circulation at the level of large vessels. A variable elastance model reproduces ventricular ejection. The circulatory model has been modified embedding an algorithm able to adjust the model parameters reproducing specific circulatory conditions. The algorithm reads input variables: heart rate, aortic pressure, cardiac output, and left atrial pressure. After a preliminary estimate of circulatory parameters and ventricular elastance, it adjusts the amount of circulating blood, the value of the systemic peripheral resistance, left ventricular elastance, and ventricular rest volume. Input variables and the corresponding calculated variables are recursively compared: the procedure is stopped if the difference between input and calculated variables is within the set tolerance. At the procedure end, the model produces an estimate of ventricular volumes and Emaxl along with systemic and pulmonary pressures (output variables). The procedure has been tested using 4 sets of experimental data including left ventricular assist device assistance. Results: The algorithm allows the reproduction of the circulatory conditions defined by all input variable sets, giving as well an estimate of output variables. Conclusions: The algorithm permits application of the model in environments where the simplicity of use and velocity of execution are of primary importance. Due to its modular structure, the model can be modified adding new circulatory districts or changing the existing ones. The model could also be applied in educational applications.
Application of a user-friendly comprehensive circulatory model for estimation of hemodynamic and ventricular variables
Ferrari G;De Lazzari C;
2008
Abstract
Purpose: Application of a comprehensive, user-friendly, digital computer circulatory model to estimate hemodynamic and ventricular variables. Methods: The closed-loop lumped parameter circulatory model represents the circulation at the level of large vessels. A variable elastance model reproduces ventricular ejection. The circulatory model has been modified embedding an algorithm able to adjust the model parameters reproducing specific circulatory conditions. The algorithm reads input variables: heart rate, aortic pressure, cardiac output, and left atrial pressure. After a preliminary estimate of circulatory parameters and ventricular elastance, it adjusts the amount of circulating blood, the value of the systemic peripheral resistance, left ventricular elastance, and ventricular rest volume. Input variables and the corresponding calculated variables are recursively compared: the procedure is stopped if the difference between input and calculated variables is within the set tolerance. At the procedure end, the model produces an estimate of ventricular volumes and Emaxl along with systemic and pulmonary pressures (output variables). The procedure has been tested using 4 sets of experimental data including left ventricular assist device assistance. Results: The algorithm allows the reproduction of the circulatory conditions defined by all input variable sets, giving as well an estimate of output variables. Conclusions: The algorithm permits application of the model in environments where the simplicity of use and velocity of execution are of primary importance. Due to its modular structure, the model can be modified adding new circulatory districts or changing the existing ones. The model could also be applied in educational applications.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_62771-doc_34323.pdf
non disponibili
Descrizione: Application of a user-friendly comprehensive circulatory model for estimation
Dimensione
357.47 kB
Formato
Adobe PDF
|
357.47 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


