The photogeneration of Frenkel-type excitons, instead of pairs of free charges, is one of the main drawbacks of organic photovoltaics, when compared with the inorganic counterpart. The strong Coulomb interaction of charge carriers of opposite sign in organic materials is responsible for the complexity of the process of generation of unbound charges, affecting the photogenerated current and still not clearly understood, as well as for the free energy loss of electrons resulting in a diminished open circuit voltage. Despite this practical limitation, record power conversion efficiencies approaching 10% are currently reported for lab-scale single-junction structures made of low-bandgap electron-donating conjugated small molecules or polymers blended with electron-accepting fullerene derivatives. To go beyond, a deep understanding of charge generation dynamics, highly system dependent, is necessary for the definition of the rules for the design of high-performance organic materials for the photovoltaic application and possibly the reduction of exciton binding energy, through the increase of the dielectric constant, which definitively would overcome the practical constraints to high efficiency organic solar cells.

Pushing the Envelope of the Intrinsic Limitation of Organic Solar Cells

Camaioni N;
2013

Abstract

The photogeneration of Frenkel-type excitons, instead of pairs of free charges, is one of the main drawbacks of organic photovoltaics, when compared with the inorganic counterpart. The strong Coulomb interaction of charge carriers of opposite sign in organic materials is responsible for the complexity of the process of generation of unbound charges, affecting the photogenerated current and still not clearly understood, as well as for the free energy loss of electrons resulting in a diminished open circuit voltage. Despite this practical limitation, record power conversion efficiencies approaching 10% are currently reported for lab-scale single-junction structures made of low-bandgap electron-donating conjugated small molecules or polymers blended with electron-accepting fullerene derivatives. To go beyond, a deep understanding of charge generation dynamics, highly system dependent, is necessary for the definition of the rules for the design of high-performance organic materials for the photovoltaic application and possibly the reduction of exciton binding energy, through the increase of the dielectric constant, which definitively would overcome the practical constraints to high efficiency organic solar cells.
2013
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
Fotovoltaico
celle solari
materiali organici
fullerene
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/7485
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact