We investigated binding of hydrogen atoms to small polycyclic aromatic hydrocarbons (PAHs)--i.e., graphene dots with hydrogen-terminated edges--using density functional theory and correlated wavefunction techniques. We considered a number of PAHs with three to seven hexagonal rings and computed binding energies for most of the symmetry unique sites, along with the minimum energy paths for significant cases. The chosen PAHs are small enough to not present radical character at their edges, yet show a clear preference for adsorption at the edge sites which can be attributed to electronic effects. We show how the results, as obtained at different levels of theory, can be rationalized in detail with the help of a few simple concepts derivable from a tight-binding model of the ? electrons.
A few simple rules governing hydrogenation of graphene dots
Ponti A;
2011
Abstract
We investigated binding of hydrogen atoms to small polycyclic aromatic hydrocarbons (PAHs)--i.e., graphene dots with hydrogen-terminated edges--using density functional theory and correlated wavefunction techniques. We considered a number of PAHs with three to seven hexagonal rings and computed binding energies for most of the symmetry unique sites, along with the minimum energy paths for significant cases. The chosen PAHs are small enough to not present radical character at their edges, yet show a clear preference for adsorption at the edge sites which can be attributed to electronic effects. We show how the results, as obtained at different levels of theory, can be rationalized in detail with the help of a few simple concepts derivable from a tight-binding model of the ? electrons.File | Dimensione | Formato | |
---|---|---|---|
prod_48618-doc_3715.pdf
non disponibili
Descrizione: A few simple rules governing hydrogenation of graphene dots
Dimensione
952.62 kB
Formato
Adobe PDF
|
952.62 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.