Surface modification of polymeric films is a way to obtain final products with high performance for many specific and ad hoc tailored applications, e.g. in functional packaging, tissue engineering or (bio)sensing. The present work reports, for the first time, on the design and development of surface modified ethylene–acrylic acid copolymer (EAA) films with polyaniline (PANI), with the aim of inducing electrical conductivity and potentially enable the electronic control of a range of physical and chemical properties of the film surface, via a new ‘‘grafting from’’ approach. In particular, we demonstrate that PANI was successfully polymerized and covalently grafted onto flexible EAA substrates, previously activated. The final hybrid materials and the corresponding intermediates were fully characterized via FTIR, XPS, SEM–EDAX, mechanical and electrical tests. The mechanical properties of the films are not detrimentally affected by each treatment step, while a significant increase in electrical conductivity was achieved for the new hybrid materials.

A New Route for the Preparation of Flexible Skin-Core Poly(Ethylene-Coacrylic Acid)/ Polyaniline Functional Hybrids

Armelao L
2011

Abstract

Surface modification of polymeric films is a way to obtain final products with high performance for many specific and ad hoc tailored applications, e.g. in functional packaging, tissue engineering or (bio)sensing. The present work reports, for the first time, on the design and development of surface modified ethylene–acrylic acid copolymer (EAA) films with polyaniline (PANI), with the aim of inducing electrical conductivity and potentially enable the electronic control of a range of physical and chemical properties of the film surface, via a new ‘‘grafting from’’ approach. In particular, we demonstrate that PANI was successfully polymerized and covalently grafted onto flexible EAA substrates, previously activated. The final hybrid materials and the corresponding intermediates were fully characterized via FTIR, XPS, SEM–EDAX, mechanical and electrical tests. The mechanical properties of the films are not detrimentally affected by each treatment step, while a significant increase in electrical conductivity was achieved for the new hybrid materials.
2011
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Istituto di Scienze e Tecnologie Molecolari - ISTM - Sede Milano
Chemical surface modification
Electrical conductivity
Hyb
Morphology
Polyaniline
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/75663
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact