Vehicular Ad Hoc Networks (VANETs) are attracting the attention of researchers, industry, and governments for their potential of significantly increasing the safety level on the road. In order to understand whether VANETs can actually realize this goal, in this paper we analyze the dynamics of multi-hop emergency message dissemination in VANETs. Under a probabilistic wireless channel model that accounts for interference, we derive lower bounds on the probability that a car at distance d from the source of the emergency message correctly receives the message within time t. Besides d and t, this probability depends also on 1-hop channel reliability, which we model as a probability value p, and on the message dissemination strategy. Our bounds are derived for an idealized dissemination strategy which ignores interference, and for two provably near-optimal dissemination strategies under protocol interference. The bounds derived in the first part of the paper are used to carefully analyze the tradeoff between the safety level on the road (modeled by parameters d and t), and the value of 1-hop message reliability p. The analysis of this tradeoff discloses several interesting insights that can be very useful in the design of practical emergency message dissemination strategies.

Analysis of Multi-Hop Emergency Message Propagation in Vehicular Ad Hoc Networks

Resta G;Santi P;
2007

Abstract

Vehicular Ad Hoc Networks (VANETs) are attracting the attention of researchers, industry, and governments for their potential of significantly increasing the safety level on the road. In order to understand whether VANETs can actually realize this goal, in this paper we analyze the dynamics of multi-hop emergency message dissemination in VANETs. Under a probabilistic wireless channel model that accounts for interference, we derive lower bounds on the probability that a car at distance d from the source of the emergency message correctly receives the message within time t. Besides d and t, this probability depends also on 1-hop channel reliability, which we model as a probability value p, and on the message dissemination strategy. Our bounds are derived for an idealized dissemination strategy which ignores interference, and for two provably near-optimal dissemination strategies under protocol interference. The bounds derived in the first part of the paper are used to carefully analyze the tradeoff between the safety level on the road (modeled by parameters d and t), and the value of 1-hop message reliability p. The analysis of this tradeoff discloses several interesting insights that can be very useful in the design of practical emergency message dissemination strategies.
2007
Istituto di informatica e telematica - IIT
978-1-59593-684-4
active safety
dissemination strategies
emergency messaging
vehicular ad hoc networks
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/75861
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 94
  • ???jsp.display-item.citation.isi??? 52
social impact