Paintings are composed of superimposed layers of inorganic and organic materials (pigments and binders). Knowledge of the stratigraphic sequence of these heterogeneous layers is fundamental for understanding the artist's painting technique and for conservation issues. In this study, micro-IR mapping experiments in reflection mode have been carried out on cross-sections taken from simulations of ancient easel paintings. The objective was to locate both organic binders and inorganic pigments. Chemical maps have been re-constructed using the common approach based on the integration of specific infrared bands. However, owing to the complexity of painting materials, this approach is not always applicable when dealing with broad and superimposed spectral features and with reststrahlen or derivative-like bands resulting from acquisition in reflection mode. To overcome these limitations, principal-component analysis has been successfully used for the re-construction of the image, extracting the relevant information from the complex full spectral data sets and obtaining reliable chemical distributions of the stratigraphy materials. Different pigment-binder combinations have been evaluated in order to understand limitations and strengths of the approach. Finally, the method has been applied for stratigraphic characterization of a cross-section from a 17th century wooden sculpture identifying both the original paint layer and the several overpaintings constituting the complex stratigraphy.

Multivariate chemical mapping of pigments and binders in easel painting cross-sections by micro IR reflection spectroscopy

Rosi F;Brunetti BG;Sgamellotti A;Miliani C
2011

Abstract

Paintings are composed of superimposed layers of inorganic and organic materials (pigments and binders). Knowledge of the stratigraphic sequence of these heterogeneous layers is fundamental for understanding the artist's painting technique and for conservation issues. In this study, micro-IR mapping experiments in reflection mode have been carried out on cross-sections taken from simulations of ancient easel paintings. The objective was to locate both organic binders and inorganic pigments. Chemical maps have been re-constructed using the common approach based on the integration of specific infrared bands. However, owing to the complexity of painting materials, this approach is not always applicable when dealing with broad and superimposed spectral features and with reststrahlen or derivative-like bands resulting from acquisition in reflection mode. To overcome these limitations, principal-component analysis has been successfully used for the re-construction of the image, extracting the relevant information from the complex full spectral data sets and obtaining reliable chemical distributions of the stratigraphy materials. Different pigment-binder combinations have been evaluated in order to understand limitations and strengths of the approach. Finally, the method has been applied for stratigraphic characterization of a cross-section from a 17th century wooden sculpture identifying both the original paint layer and the several overpaintings constituting the complex stratigraphy.
2011
Istituto di Scienze e Tecnologie Molecolari - ISTM - Sede Milano
File in questo prodotto:
File Dimensione Formato  
prod_48731-doc_93198.pdf

solo utenti autorizzati

Descrizione: Cross section stratigraphy
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/76477
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact