A late Quaternary, current-lain sediment drift deposit over 30 m in thickness has been discovered on the continental shelf of East Antarctica in an 850 m deep glacial trough off George Vth Land. Radiocarbon dating indicates that a period of rapid deposition on the drift (averaging 290 cm/kyr) occurred in the mid-Holocene, between about 3000 and 5000 yr before present (yr BP). Slower deposition rates of around 10 cm/kyr, during the past 0-3000 yr and from 5000 to about 13000 yr BP, coincides with the deposition of bioturbated, ice-rafted debris (IRD) rich, sandy mud under an energetic bottom current regime. In contrast, the mid-Holocene (3000-5000 yr BP) sediments are fine-grained, laminated to cross-laminated with minimal IRD content, and are contemporaneous with a period of warmer marine conditions with less sea ice production. This pattern suggests that bottom currents were weaker than present day in the mid-Holocene, and that the rate of dense bottom water production was reduced at that time. This scenario is consistent with the hypothesis of non-steady state rates of Antarctic bottom water production through the Holocene as recently proposed by Broecker and his colleagues.

Continental shelf drift deposit indicates non-steady state Antarctic bottom water production in the Holocene

Trincardi F
2001

Abstract

A late Quaternary, current-lain sediment drift deposit over 30 m in thickness has been discovered on the continental shelf of East Antarctica in an 850 m deep glacial trough off George Vth Land. Radiocarbon dating indicates that a period of rapid deposition on the drift (averaging 290 cm/kyr) occurred in the mid-Holocene, between about 3000 and 5000 yr before present (yr BP). Slower deposition rates of around 10 cm/kyr, during the past 0-3000 yr and from 5000 to about 13000 yr BP, coincides with the deposition of bioturbated, ice-rafted debris (IRD) rich, sandy mud under an energetic bottom current regime. In contrast, the mid-Holocene (3000-5000 yr BP) sediments are fine-grained, laminated to cross-laminated with minimal IRD content, and are contemporaneous with a period of warmer marine conditions with less sea ice production. This pattern suggests that bottom currents were weaker than present day in the mid-Holocene, and that the rate of dense bottom water production was reduced at that time. This scenario is consistent with the hypothesis of non-steady state rates of Antarctic bottom water production through the Holocene as recently proposed by Broecker and his colleagues.
2001
Istituto di Scienze Marine - ISMAR
Antarctica
Sediment drifts
bottom currents
deep ventilation
oceanic currents
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/76597
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact