Familial epilepsies are often caused by mutations of voltage-gated Na+ channels, but correlation genotype-phenotype is not yet clear. In particular, the cause of phenotypic variability observed in some epileptic families is unclear. We studied Na(v)1.1 (SCN1A) Na+ channel alpha subunit M1841T mutation, identified in a family characterized by a particularly large phenotypic spectrum. The mutant is a loss of function because when expressed alone, the current was no greater than background. Function was restored by incubation at temperature <30 degrees C, showing that the mutant is trafficking defective, thus far the first case among neuronal Na+ channels. Importantly, also molecular interactions with modulatory proteins or drugs were able to rescue the mutant. Protein-protein interactions may modulate the effect of the mutation in vivo and thus phenotype; variability in their strength may be one of the causes of phenotypic variability in familial epilepsy. Interacting drugs may be used to rescue the mutant in vivo.

Modulatory proteins can rescue a trafficking defective epileptogenic Nav1.1 Na+ channel mutant.

Annesi G;
2007

Abstract

Familial epilepsies are often caused by mutations of voltage-gated Na+ channels, but correlation genotype-phenotype is not yet clear. In particular, the cause of phenotypic variability observed in some epileptic families is unclear. We studied Na(v)1.1 (SCN1A) Na+ channel alpha subunit M1841T mutation, identified in a family characterized by a particularly large phenotypic spectrum. The mutant is a loss of function because when expressed alone, the current was no greater than background. Function was restored by incubation at temperature <30 degrees C, showing that the mutant is trafficking defective, thus far the first case among neuronal Na+ channels. Importantly, also molecular interactions with modulatory proteins or drugs were able to rescue the mutant. Protein-protein interactions may modulate the effect of the mutation in vivo and thus phenotype; variability in their strength may be one of the causes of phenotypic variability in familial epilepsy. Interacting drugs may be used to rescue the mutant in vivo.
2007
Istituto di Scienze Neurologiche - ISN - Sede Mangone
File in questo prodotto:
File Dimensione Formato  
prod_50035-doc_38845.pdf

non disponibili

Descrizione: Modulatory proteins can rescue a trafficking defective epileptogenic Nav1.1 Na+ channel mutant.
Dimensione 440.75 kB
Formato Adobe PDF
440.75 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/76695
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 97
social impact