Argonaute are a conserved class of proteins central to the microRNA pathway. We have highlighted a novel and non-redundant function of Ago1 versus Ago2; the two core factors of the miRNA-associated RISC complex. Stable overexpression of Ago1 in neuroblastoma cells causes the cell cycle to slow down, a decrease in cellular motility and a stronger apoptotic response upon UV irradiation. These effects, together with a significant increase in p53 levels, suggest that Ago1 may act as a tumor-suppressor factor, a function also supported by GEO Profiles microarrays that inversely correlate Ago1 expression levels with cell proliferation rates.

Ago1 and Ago2 differentially affect cell proliferation, motility and apoptosis when overexpressed in SH-SY5Y neuroblastoma cells

2011

Abstract

Argonaute are a conserved class of proteins central to the microRNA pathway. We have highlighted a novel and non-redundant function of Ago1 versus Ago2; the two core factors of the miRNA-associated RISC complex. Stable overexpression of Ago1 in neuroblastoma cells causes the cell cycle to slow down, a decrease in cellular motility and a stronger apoptotic response upon UV irradiation. These effects, together with a significant increase in p53 levels, suggest that Ago1 may act as a tumor-suppressor factor, a function also supported by GEO Profiles microarrays that inversely correlate Ago1 expression levels with cell proliferation rates.
2011
Istituto di Biologia Cellulare e Neurobiologia - IBCN - Sede Monterotondo Scalo
Istituto di Biochimica e Biologia Cellulare - IBBC
Argonaute
Cell proliferation
SH-SY5Y
Cancer
miRNA
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/77425
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact