A study is made of how cardiac tissue responds to externally applied currents. The bidomain model is extended to a three dimensional block of myocardium which is represented by a set of plane layers of parallel fibers with direction rotating from endocardium to epicardium. The problem is mathematically expressed by a system of partial differential equations Lu = f, where L is the elliptic operator related to the tensor of anisotropic conductivity, u is the vector of intra and extracellular potentials, and f represents the vector of currents injected in the intra and extracellular domain, respectively. The finite element method is used to approximate the solution by piecewise trilinear polynomials on a uniform grid. Numerical results are obtained for different kinds of current injections.
Numerical simulation of intra and extracellular electric fields in a tridimensional anisotropic model of cardiac muscle
M Pennacchio;
1991
Abstract
A study is made of how cardiac tissue responds to externally applied currents. The bidomain model is extended to a three dimensional block of myocardium which is represented by a set of plane layers of parallel fibers with direction rotating from endocardium to epicardium. The problem is mathematically expressed by a system of partial differential equations Lu = f, where L is the elliptic operator related to the tensor of anisotropic conductivity, u is the vector of intra and extracellular potentials, and f represents the vector of currents injected in the intra and extracellular domain, respectively. The finite element method is used to approximate the solution by piecewise trilinear polynomials on a uniform grid. Numerical results are obtained for different kinds of current injections.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_235635-doc_155841.pdf
solo utenti autorizzati
Descrizione: Numerical simulation of intra and extracellular electric fields in a tridimensional anisotropic model of cardiac muscle
Tipologia:
Versione Editoriale (PDF)
Dimensione
154.14 kB
Formato
Adobe PDF
|
154.14 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


