Industrial chemicals, pesticides, pharmaceuticals, foods, heavy metals, air pollutants, and naturally occurring substances, are an integral part of our daily lives. Environmental exposure can induce changes in gene regulation associated with human diseases. A new discipline of toxicology is "predictive toxicology" that defines the relationship between the structure and activity of the genome and the adverse biological effects of exogenous agents. Toxicogenomic technologies allow complete assessment of the functional activity of biochemical pathways, and of the structural genetic (sequence) differences among individuals (polymorphisms), that were previously unattainable. Microarray technology provides the means to study multiple pathways and mechanisms at concurrent times. Gene expression is a sensitive indicator of toxicant exposure, disease state, and cellular metabolism and thus represents a way of characterising how cells and organisms adapt to changes in the external environment. The application of these technologies to toxicology can lead us into a new era when genotypes and toxicant-induced genome expression, proteins, and metabolite patterns can be used to screen compounds for hazard identification, to monitor individual exposure to toxicants, to track cellular responses to different doses, to assess mechanisms of action, and to predict individual variability in sensitivity to toxicants and potential ways to improve risk assessment.
Sostanze chimiche di origine industriale, pesticidi, farmaci, alimenti e additivi alimentari, metalli pesanti, inquinanti atmosferici, e sostanze di origine naturale, sono parte integrante della vita quotidiana. L'esposizione ambientale puo? indurre cambiamenti nella regolazione genica che possono essere associati a diverse patologie. Una nuova disciplina della tossicologia e? la "tossicologia predittiva", la quale mette in relazione la struttura e la funzione genomica con potenziali effetti sulla salute dovuti a agenti esogeni. Le tecnologie di tossicogenomica forniscono una valutazione completa dell'attivita? funzionale dei pathways biochimici e delle differenze geniche strutturali (sequenze) tra individui (polimorfismi) che erano finora non ottenibili. La tecnologia dei microarray permette di studiare molteplici pathways e meccanismi contemporaneamente. L'espressione genica e? un indicatore sensibile dell'esposizione a sostanze tossiche, dello stato di salute, e del metabolismo e quindi rappresenta un modo di comprendere come cellule e organismi si adattano ai cambiamenti ambientali. L'applicazione di queste tecnologie alla tossicologia, ci porta in un'era in cui i genotipi e l'alterazione dei patterns di espressione genica, proteica e metabolica, in seguito ad esposizione a xenobiotici, puo? risultare uno strumento efficace per l'identificazione dei rischi delle sostanze chimiche e per monitorare individui esposti a sostanze tossiche, per conoscere la risposta cellulare a dosi diverse. Inoltre il loro impiego puo? essere esteso per valutare i meccanismi d'azione e predire la variabilita? individuale a xenobiotici nell'ottica piu? ampia di migliorare la valutazione del rischio, sia in gruppi di popolazione generale sia in soggetti professionalmente esposti.
Gene expression and environmental exposure to xenobiotics: overview and applications.
Biamonti G;
2008
Abstract
Industrial chemicals, pesticides, pharmaceuticals, foods, heavy metals, air pollutants, and naturally occurring substances, are an integral part of our daily lives. Environmental exposure can induce changes in gene regulation associated with human diseases. A new discipline of toxicology is "predictive toxicology" that defines the relationship between the structure and activity of the genome and the adverse biological effects of exogenous agents. Toxicogenomic technologies allow complete assessment of the functional activity of biochemical pathways, and of the structural genetic (sequence) differences among individuals (polymorphisms), that were previously unattainable. Microarray technology provides the means to study multiple pathways and mechanisms at concurrent times. Gene expression is a sensitive indicator of toxicant exposure, disease state, and cellular metabolism and thus represents a way of characterising how cells and organisms adapt to changes in the external environment. The application of these technologies to toxicology can lead us into a new era when genotypes and toxicant-induced genome expression, proteins, and metabolite patterns can be used to screen compounds for hazard identification, to monitor individual exposure to toxicants, to track cellular responses to different doses, to assess mechanisms of action, and to predict individual variability in sensitivity to toxicants and potential ways to improve risk assessment.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


