Arc-jet experiments in high enthalpy hypersonic (Mach 3) non equilibrium flow were carried out on a HfB2 composite with addition of 15 vol% TaSi2, at temperatures exceeding 2000 K. The aerothermal behaviour was tested considering models having two different geometries, i.e. hemispheric and cone-shaped. The surface temperature and emissivity of the material were evaluated during the tests. Numerical computations of the nozzle flow were carried out in order to identify the flow conditions around the model and to analyze the details of thermal heating. The chemical- physical modifications were analysed after exposures. The surface emissivity changed from 0.85 to 0.5 due to surface oxidation. The maximum temperatures reached on the tip were strongly dependent on the sample geometry, being around 2300 K for the hemisphere and 2800 K for the cone. Post test SEM analyses confirmed an excellent stability for this HfB2-based material

Arc-Jet Testing on HfB2-TaSi2 Models: Effect of the Geometry on the Aerothermal Behaviour

Savino R;Silvestroni L;Sciti D
2010

Abstract

Arc-jet experiments in high enthalpy hypersonic (Mach 3) non equilibrium flow were carried out on a HfB2 composite with addition of 15 vol% TaSi2, at temperatures exceeding 2000 K. The aerothermal behaviour was tested considering models having two different geometries, i.e. hemispheric and cone-shaped. The surface temperature and emissivity of the material were evaluated during the tests. Numerical computations of the nozzle flow were carried out in order to identify the flow conditions around the model and to analyze the details of thermal heating. The chemical- physical modifications were analysed after exposures. The surface emissivity changed from 0.85 to 0.5 due to surface oxidation. The maximum temperatures reached on the tip were strongly dependent on the sample geometry, being around 2300 K for the hemisphere and 2800 K for the cone. Post test SEM analyses confirmed an excellent stability for this HfB2-based material
2010
Istituto di Scienza, Tecnologia e Sostenibilità per lo Sviluppo dei Materiali Ceramici - ISSMC (ex ISTEC)
High enthalpy flow
Ceramics
Structural composites
High temperature testing
SEM micrography
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/79545
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact